
1966
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

PAPER

Query-Trail-Mediated Cooperative Behaviors of Peers in
Unstructured P2P File Sharing Networks

Kei OHNISHI†a), Hiroshi YAMAMOTO††b), Masato UCHIDA†††c), Members, and Yuji OIE†d), Fellow

SUMMARY We propose two types of autonomic and distributed co-
operative behaviors of peers for peer-to-peer (P2P) file-sharing networks.
Cooperative behaviors of peers are mediated by query trails, and allows the
exploration of better trade-off points between file search and storage load
balancing performance. Query trails represent previous successful search
paths and indicate which peers contributed to previous file searches and
were at the same time exposed to the storage load. The first type of co-
operative behavior is to determine the locations of replicas of files through
the medium of query trails. Placement of replicas of files on strong query
trails contributes to improvement of search performance, but a heavy load
is generated due to writing files in storage to peers on the strong query
trails. Therefore, we attempt to achieve storage load balancing between
peers, while avoiding significant degradation of the search performance by
creating replicas of files in peers adjacent to peers on strong query trails.
The second type of cooperative behavior is to determine whether peers pro-
vide requested files through the medium of query trails. Provision of files
by peers holding requested files on strong query trails contributes to better
search performance, but such provision of files generates a heavy load for
reading files from storage to peers on the strong query trails. Therefore, we
attempt to achieve storage load balancing while making only small sacri-
fices in search performance by having peers on strong query trails refuse
to provide files. Simulation results show that the first type of cooperative
behavior provides equal or improved ability to explore trade-off points be-
tween storage load balancing and search performance in a static and nearly
homogeneous P2P environment, without the need for fine tuning parameter
values, compared to replication methods that require fine tuning of their
parameters values. In addition, the combination of the second type and the
first type of cooperative behavior yields better storage load balancing per-
formance with little degradation of search performance. Moreover, even in
a dynamic and heterogeneous P2P environment, the two types of coopera-
tive behaviors yield good ability to explore trade-off points between storage
load balancing and search performance.
key words: P2P file sharing, storage load balancing, file replication, co-
operative behaviors, query-trail

1. Introduction

Peer-to-peer (P2P) network models have recently attracted
a great deal of attention. One of the applications of P2P
networks that has attracted interest is a distributed storage

Manuscript received March 11, 2011.
Manuscript revised May 31, 2011.
†The authors are with Graduate School of Computer Science

and Systems Engineering, Kyushu Institute of Technology, Iizuka-
shi, 820–8502 Japan.
††The author is with Department of Electrical Engineering,

Nagaoka University of Technology, Nagaoka-shi, 940–2188 Japan.
†††The author is with Network Design Research Center, Kyushu

Institute of Technology, Chiyoda-ku, Tokyo, 100–0011 Japan.
a) E-mail: ohnishi@cse.kyutech.ac.jp
b) E-mail: hiroyama@nagaokaut.ac.jp
c) E-mail: m.uchida@ndrc.kyutech.ac.jp
d) E-mail: oie@cse.kyutech.ac.jp

DOI: 10.1587/transinf.E94.D.1966

system for file sharing. A distributed storage system for file
sharing provides a large amount of storage by accumulating
the unused storage of peers, which enables large amounts of
data to be stored and shared without the need for a costly
file server. According to [1], there are several forms in P2P
networks for file sharing. We can roughly classify P2P net-
works for file sharing into two types. One type is structured
P2P networks that have a mechanism to manage file loca-
tions in a network. Representatives of structured P2P net-
works are those using a distributed hash table (DHT) [2]–
[5]. The other type is unstructured P2P networks that do not
have such a mechanism, in which peers freely link to each
other.

At present, pure unstructured P2P file sharing networks
that are being actively used in the real world are decreas-
ing in number. For instance, LimeWire [6] built upon the
Gnutella network, which is a representative unstructured
P2P file sharing network, was previously a pure unstruc-
tured P2P file sharing network, but the present LimeWire
includes a DHT-based structured P2P network to achieve
reliable search for particular files. However, the core com-
ponent of LimeWire is still an unstructured P2P network,
and due to the flexibility of an unstructured P2P network,
it seems to be able to hold millions of active users at any
given moment. Therefore, studies on pure unstructured P2P
networks, especially large-scale ones, would be necessary.

To make such unstructured P2P networks more practi-
cal, they have been investigated from two perspectives. One
is to enhance search performance and the other is to balance
storage load among peers. To enhance search performance
in unstructured P2P networks, query forwarding methods
and file replication methods have been investigated. The ba-
sic strategy to enhance search performance in unstructured
P2P networks is that a file replication method places more
files at easy reachable peers by a given query forwarding
method or that a query forwarding method forwards queries
to peers holding more files. Such methods are essential for
efficient file sharing because no mechanism is available for
determining file locations.

However, enhancing search performance means that
particular peers are more frequently accessed, thus causing
a load bias to the particular peers. This problem is actu-
ally similar to the problem of one point failure in client-
server network services. Thus, there is a trade-off relation-
ship between search performance and storage load balanc-
ing in unstructured P2P networks, and therefore, unstruc-
tured P2P networks should include not only strategies to

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



OHNISHI et al.: QUERY-TRAIL-MEDIATED COOPERATIVE BEHAVIORS OF PEERS IN UNSTRUCTURED P2P FILE SHARING NETWORKS
1967

enhance search performance but strategies to balance load
among peers as well to reliably sustain themselves.

In the present study, we focus on unstructured P2P net-
works. The goal of the present study is to explore better
trade-off points between storage load balancing and search
performance in unstructured P2P file sharing networks. We
therefore propose two types of autonomic and distributed
cooperative behaviors of peers. In addition, we examine the
ability of the two types of cooperative behavior of peers to
explore trade-off points between storage load balancing and
search performance through simulation experiments. Co-
operative behaviors of peers are mediated by query trails.
Query trails represent information of previous successful
search paths and demonstrate which peers contributed to
previous file searches and were at the same time exposed
to the storage load. The strength of query-trails basically
stands for access frequency to storage of peers.

We consider two types of storage load in the present
paper. The first type of storage load is caused by writing a
file in a peer. The meaning of writing a file in a peer is that a
peer receiving a request to create a replica of a file stores the
file in its storage. The second type of storage load is caused
by reading a file from a peer. The meaning of reading a file
from a peer is that a peer holding a requested file retrieves
the requested file from its storage to forward the file to a peer
making the request. The two types of cooperative behaviors
of peers are proposed to balance these two types of storage
load.

The first type of cooperative behavior of peers basically
aims at balancing load among peers caused by writing files
in the peers. This cooperative behavior of peers is actually
equivalent to a file replication method and determines the
locations of replicas of files through the medium of query
trails. However, this first type of cooperative behavior of
peers cannot handle balancing load among peers caused by
reading files from the peers. The second type of cooperative
behavior of peers basically aims at balancing load among
peers caused by reading files from the peers. The second
type is to determine whether peers refuse to provide files
through the medium of query trails.

The present paper is organized as follows. Section 2
describes related research. Section 3 explains the proposed
replication method, which is the first type of cooperative be-
havior of peers mediated by query-trails mentioned above.
The proposed method is experimentally evaluated assum-
ing a static and nearly homogeneous P2P environment in
Sect. 4. In Sect. 5, we propose a method for balancing the
load of reading files from storage, which is the second type
of cooperative behavior of peers mediated by query-trails. In
addition, the proposed method is combined with the replica-
tion method proposed in Sect. 3, and the combined method
is examined experimentally assuming a static and nearly
homogeneous P2P environment. In Sect. 6, the combined
method is examined experimentally assuming a dynamic
and heterogeneous P2P environment in contrast to the envi-
ronment assumed in Sect. 5. Our conclusions are presented
in Sect. 7.

2. Related Work

In this paper we propose a replication method for unstruc-
tured P2P networks and a method for determining a peer
that provides a requested file in unstructured P2P networks.
These proposed methods are intended to explore better
trade-off points between search and storage load balancing
performances. So, we here briefly describe previous stud-
ies of replication methods for unstructured P2P networks,
methods for determining peers that provide services in un-
structured P2P networks, load balancing methods for un-
structured P2P networks, and methods for exploring some
performance trade-off in unstructured P2P networks.

Replication methods are used in unstructured P2P net-
works for enhancing search efficiency and reliability [7]–
[11]. Since searching in unstructured P2P networks is blind,
replicas of files distributed over networks contribute to quick
and reliable file searching. In [11], several previous repli-
cation methods are reviewed from two aspects, which are
selection of files for replication and selection of sites for
hosting new replicas, and a new replication method is also
proposed. The replication method proposed in [11], Q-
replication, selects files for replication based on calculation
of popularity of the files in each peer. Also, it selects peers
for hosting new replicas from among peers reachable from
a peer of focus by random-walk with limited hop counts, in
which the ability and availability of the candidate peers for
hosting new replicas are considered to be selected. These
ways are different from those of our replication method, but
how to select peers for hosting new replicas is methodologi-
cally similar to ours in terms of selecting the candidate peers
by random walk. In this way, peers of high degree are likely
to be selected.

Replication methods are also used in unstructured P2P
networks for access load balancing [12]. In [12], the load on
a peer is defined as the number of bytes transfered from the
peer as a response to queries originated from other nodes.
The load index is the Fairness Index, which is basically
the same as the Balance Index [13] presented and used in
Sect. 6. The replication method presented in [12] relies only
on local communication between peers to achieve load bal-
ancing. The peers locally exchange their load states and
examine if they are overloaded compared to the neighbor-
ing peers using their load states and a threshold. If a peer
is regarded as an overloaded peer, then the peer replicates
the most frequently queried item among its own items on
a neighboring peer that the most frequently or the second
frequently forwards the query for the item to the peer, if
the replication is expected to better achieve load balancing.
Our replication method presented in this paper also relies
only on local communication among peers to achieve load
balancing and makes the peers judge if they are allowed to
create replicas of items on other peers based on their load
states, which correspond to query trails in the present paper.
However, our replication method tries to create replicas of
items just when a successful search path for a certain query



1968
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

is obtained, and candidate peers on which the replicas will
be created are those on the successful search path and their
neighboring peers. In addition, replicas of items are likely to
create on less loaded peers, rather that peers that frequently
forwarded queries to overloaded peers.

Our previous paper [14] focused on replication meth-
ods in unstructured P2P networks for file sharing. Our ob-
jective was not only to achieve good search performance but
also to achieve storage load balancing. In particular, we pro-
posed three different replication methods in our previous pa-
per: Path Random Replication, Path Adaptive Replication,
and Path Adaptive Replication with Priority Level. These
methods are all probabilistic replication methods that make
replicas of files in peers on the present successful search
path. Unlike our previous replication methods presented in
[14], the replication method presented in this paper consid-
ers the relationship between the states of storage loads of
peers adjacent to the peer of focus in order to achieve stor-
age load balancing among peers.

There are several methods for selecting peers that pro-
vide services based on given metrics. Peers providing ser-
vices like files in a file sharing network are selected in or-
der for the network to reduce cross-ISP traffic in [15] and
to minimize downloading time for files in [16]. In this pa-
per, we propose a method for selecting peers that provide
requested files in order for the network to balance the load
of reading files from the storage among peers.

As approaches to load balancing in unstructured P2P
networks, dynamic topology reconfiguration schemes [17],
[18] have been proposed. The topology reconfiguration
schemes basically dynamically move logical incoming links
of overloaded peers to underloaded peers. The method pre-
sented in [17] is meant to balance load caused by queries
among peers by the topology reconfiguration, in which vir-
tual servers mediate between overloaded and underloaded
peers.

There are several studies that seek to explore certain
performance tradeoff in unstructured P2P networks [19],
[20]. For example, in [19], the tradeoff between overall
system performance and fairness to high bandwidth users
in BitTorrent-like unstructured P2P systems is considered.
In the present paper, we seek to explore the performance
tradeoff between access load balancing and search in un-
structured P2P networks.

Our previous paper relevant to the present paper is [21].
In [21], the first type of cooperative behavior of peers men-
tioned in Sect. 1 was proposed and evaluated through sim-
ulations. In the present paper, we will newly propose an-
other type of storage load balancing method, which balances
load caused by reading a file from a peer, and also, explain
the two types of storage load balancing methods proposed
in [21] and the present paper by a concept of query-trail-
mediated cooperative behaviors of peers. In addition, we
will evaluate the proposed cooperative behaviors of peers in
dynamic P2P environments through simulations.

3. Replication Method

In this section, we present the first type of cooperative be-
haviors of peers, which is a new replication method for
unstructured P2P networks for file sharing. The proposed
replication method determines where to place replicas of
files through the medium of query trails. The new method
is meant to balance the storage load among peers as well as
to limit the increase in the number of hops needed to find
requested files.

3.1 Concept

In the present study, we use a random-walk-based query for-
warding method. In fact, under the use of random-walk-
based query forwarding methods, differences in degree of
peers could induce differences in the frequency of query ar-
rival to the peers. Concretely, when a random walker moves
around in an arbitrary network, the probability with which
the random walker arrives at a node is proportional to the de-
gree of the node [22]. In such a case, if P2P networks select
only peers on the present successful search path as peers in
which a replica of a requested file is created, it is likely that
the rate at which the number of files in peers of high degree
increases is higher than that in peers of low degree. In addi-
tion, it is likely that queries made by peers of low degree are
propagated by way of peers of high degree. That is, peers
of low degree depend strongly on peers of high degree with
respect to file searching. Therefore, in order to achieve load
balancing in P2P networks, peers of low degree should bear
part of the overall load that peers of high degree require to
achieve load balancing in P2P networks.

It is, however, true that peers of high degree have to
hold several replicas of files in order to handle the increases
in the number of hops. To overcome the trade-off between
storage load balancing and search performance, we will
place several replicas of files in peers adjacent to a peer of
high degree so that the peers adjacent to the peer of high de-
gree can provide with certainty requested files that the peer
of high degree does not provide. This method would not
increase the number of hops greatly. However, if several
replicas of files are placed in peers of high degree adjacent
to a peer of high degree, the situation would be the same as
in Path Replication and Path Random Replication, in which
replicas of files are placed in peers on the present search
path. Therefore, the key to simultaneous achievement of
load balancing and reduction of the number of hops is the
method by which replicas of files are allocated around peers
of high degree. That is, replicas of files should be placed in
peers with less load that are adjacent to peers of high degree.

When using a random-walk-based query forwarding
method and a file replication method that create replicas of
files in peers on the present successful search path, degree of
peers can be thought to be correlated with the storage load
of peers, and therefore, can be used as values to estimate the
storage load of peers. On the other hand, in a different sit-



OHNISHI et al.: QUERY-TRAIL-MEDIATED COOPERATIVE BEHAVIORS OF PEERS IN UNSTRUCTURED P2P FILE SHARING NETWORKS
1969

uation from this, it is not sure that degree of peers works as
values to estimate the storage load of peers. Therefore, we
should prepare values to estimate the storage load of peers
in a variety of situations including the situation above.

In the present study, we use query trails as values to
estimate the storage load of peers. The query trails rep-
resent information on the previous successful search paths
that queries passed through. However, since it is impossible
to leave query trails on network links, each peer memorizes
which directed links from the peer to its neighboring peers
queries passed through. In other words, each peer memo-
rizes which of its neighboring peers it forwarded queries to.
We regard peers through which queries frequently passed
and to which queries were frequently forwarded by their
neighboring peers as peers of high load.

We have two reasons for choosing the strength of query
trails as values that represent the storage load of peers from
among various possible values to estimate the storage load
of peers. One reason is technical. The strength of query
trails can reveal which peers were subjected to storage loads
by previous searches, no matter what query forwarding
methods are used. The other reason is conceptual. The
replication method mediated by query trails is analogous in
some sense to an ant colony mediated by pheromone trails.
An ant colony has a function whereby a group of ants finds
the shortest path from an anthill to food, so that the anal-
ogy of an ant colony has been used for methods by which to
search for the shortest path [23], [24] and path with the low-
est cost on the Internet [25]. Here, we focus on the feedback
of actions of elements with a small function, such as ants
or peers, to the entire function, rather than on a function to
find the path with the lowest cost. Whereas the entire func-
tion whereby a swarm of ants forms through the medium of
pheromone trails is to find the shortest path from an ant hill
to a food source, the entire function whereby a swarm of
peers forms through the medium of query trails is the cre-
ation of file replications capable of storage load balancing
and practical file search performance.

3.2 Method

Next, we will explain in detail the proposed replication
method. The basic feature of the proposed replication
method is to determine a peer in which a replica of a re-
quested file is placed by using the history of the previous
successful searches, which is equivalent to a query trail. The
history is managed not by particular peers but by each peer.
If particular peers manage the history as in a client-server
network, their disappearance from a network would damage
the overall functionality of the network. On the other hand,
by allowing each peer to manage only its own search expe-
rience, the disappearance of peers would not greatly affect
the overall functionality of a network.

The proposed replication method repeats the three
steps described below.

Fig. 1 An example of obtaining a successful search path. The circles
represent peers, and the lines between circles represent links.

(1) Obtaining a successful search path
A given query forwarding method first finds a file re-
quested by some peer and then obtains the path from
the peer that makes a query to a peer having a requested
file as the present successful search path (see Fig. 1).
If a given query forwarding method finds several suc-
cessful search paths at the same time, the shortest path
among all of the successful search paths is regarded as
the present successful search path.

(2) Selecting peers for placing replicas of files
Peers on the present successful search path and their
neighboring peers have possibility of being selected as
peers in which a replica of a requested file is created
probabilistically. Two measures of query trails strength
are used for the selection of peers.
Suppose that a certain peer on the present successful
search path, q, is linked to Q peers. First, the number of
times that peer q was on the previous successful search
paths, Oq, and the average number of times that its Q
neighboring peers were on them, OQ, are obtained, as
given by Eq. (1):

OQ =

∑Q
i=1 Oi

Q
, (1)

where Oi (i = 1, 2, . . . ,Q) is the number of times that
the i-th peer in the Q neighboring peers was on the pre-
vious successful search paths. This is one of the two
measures of the strength of the query trails.
Next, according to the comparative results between Oq

and OQ, which fall into either of the two cases de-
scribed below, the replication method selects a peer in
which a replica of a requested file is created probabilis-
tically and then actually makes the replica in the se-
lected peer with fixed probability. This fixed probabil-
ity is a parameter of the proposed method and is here-
inafter referred to as the replication probability (RP).
As shown below, OQ, as represented by Eq. (1), adds
two different types of replication strategy into each of
the local networks that comprise the entire network.

(a) Case 1: Oq ≤ OQ

Peer q is simply selected as a peer in which a
replica of a requested file is created with a given
replication probability. This means that if the
number of times that the peer of interest was on
the previous successful search paths is smaller
than the average number of its neighboring peers,
the peer of interest is explicitly prohibited from
selecting a peer in which a replica of a requested



1970
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

Fig. 2 An example of selecting a peer in the case of Oq ≤ OQ. The
circles represent peers, and the lines between circles represent links. The
numbers in the circles indicate the number of times that the peers were on
previous successful search paths.

file is created probabilistically (referred to as a
peer for replication hereinafter) from among its
neighboring peers. An example of this procedure
is shown in Fig. 2.

(b) Case 2: Oq > OQ

The replication method selects one peer from
among the peers adjacent to peer q, where the
points explained in Step (3) below are used.
The points are represented by positive integers.
The points are the second measure of the strength
of the query trails. Suppose that peer q previously
assigned Pi (i = 1, 2, . . . ,Q) points to each peer
adjacent to peer q. The probability with which the
i-th peer among the Q peers is selected as a peer
for replication is given by Eq. (2):

S i =

1
1+Pi

∑Q
j=1

1
1+Pj

(2)

This equation indicates that peers to which more
comparatively points were assigned in the past can
prevent themselves from being selected as peers
for replication. The replica is made in the se-
lected peer according to the above equation with
the given replication probability. An example of
this procedure is shown in Fig. 3.
In the procedure described above, if a selected
peer already has a requested file, then a replica of
the requested file is not made in the selected peer.
In addition, the procedure described above is ap-
plied to all of the peers on the present successful
search path sequentially in a direction from the
peer having the requested file to that making the
query.

(3) Updating data of peers
Let the direction to a peer having a requested file on
a successful search path be the upper direction on the
successful search path. Each peer on the present suc-
cessful search path increases by one the number of
times it forwarded a query to the peer in the upper di-
rection on the path. The number of times a query is
forwarded in this manner is hereinafter referred to as
points, and the phrase “assigning a point to a peer” is
also used herein (see Fig. 4).

Fig. 3 An example of selecting a peer in the case of Oq > OQ. The
circles represent peers, and the lines between circles represent links. The
numbers in the circles indicate the number of times that the peers were on
previous successful search paths. The numbers next to the center peer that
had 10 previous successful search paths indicate the points that the peer as-
signed to neighboring peers denoted by the arrows. In this example, each of
the six peers had a chance to be selected with probability S i (i = 1, 2, · · · , 6)
and the first peer with probability S 1 has happened to be selected.

Fig. 4 Updating the points of the peers on the present successful search
path. The numbers in the circles indicate the number of times that the peers
were on previous successful search paths. The numbers next to each peer
indicate the points that the peer assigned to neighboring peers denoted by
the arrows.

This point is one of the two measures of the strength of
the query trails, where the directions of query trails are
taken into account. The other measure of the strength
of the query trails is the number of times that peers
were on the previous successful search paths, where
the directions of query trails are not taken into account.
This is actually Oi mentioned in the explanation of Step
(2).
As for point assignment records, peers that assigned
points to other peers record to which peers they as-
signed points, along with the total number of points
they assigned to the peers in the past. The points men-
tioned here are used in Step (2)–(b) above for select-
ing peers for replication. After assigning points, all of
the peers on the present successful search path, includ-
ing peers that made a query and supplied a requested
file, increase the number of times that they were on the
previous successful search paths by one (see Fig. 4).



OHNISHI et al.: QUERY-TRAIL-MEDIATED COOPERATIVE BEHAVIORS OF PEERS IN UNSTRUCTURED P2P FILE SHARING NETWORKS
1971

The initial points and the number of times of being
on search successful paths are zero for all of the peers
composing the network.

The proposed replication method is called the Query-
trail-based Replication, referred to hereinafter as QR. In
Sects. 4 and 5, none of the peers is allowed to reduce the
number of times that it was on previous successful search
paths and points assigned to its neighboring peers. However,
in practice, the storage load of peers (access frequencies)
over a short span must be accurately estimated, for exam-
ple, by reducing the number of times that the peers were on
previous successful search paths and the points by a certain
amount at a certain interval.

Finally, to implement QR in a P2P network, every peer
has to gather the number of times that a peer was on the
previous successful search paths from its neighboring peers
whenever it determines which neighboring peer to create a
replica of a file in. This information gathering causes addi-
tional processing and network traffic to the network. How-
ever, the amount of the information exchanged among the
peers to implement QR is negligibly small compared to the
size of a file shared among the peers, because the exchanged
information is just an integer. Therefore, the cost of the in-
formation gathering mentioned here will not be discussed
hereinafter.

4. Experiments

In the previous section, we proposed the replication method,
QR. Next, we will experimentally evaluate QR with respect
to both storage load balancing and search performance.

4.1 Simulation Model

The configurations of the P2P network simulation model are
as follows. The total number of peers present in the net-
work is 10,000 and the total number of links between peers
is 20,000. The distribution of the degrees of peers in the net-
work is shown in Fig. 5. The topology of the P2P network in
the simulation model used is generated by the algorithm de-
scribed in [26]. The topology follows a power law [27], [28]
with respect to the distribution of degree. Since the Gnutella
network is a representative unstructured P2P network that
follows an approximate power law with respect to the dis-
tribution of the degree of peers [29], it is valid to use net-
work topology following a power law for the investigation
of unstructured P2P networks. So, we will evaluate the pro-
posed methods assuming a static power-law network topol-
ogy. However, it is shown in [30] that the network topology
of the recent Gnutella does not follow a power-law, if it is
build within a short period of time. That would be because
the peers frequently leave and join the network. Therefore,
we will consider a dynamic change in a P2P network topol-
ogy which is based on [30] and evaluate the proposed meth-
ods under that situation in Sect. 6.

The maximum storage capacity of every peer is 20.

Fig. 5 Distribution of the degrees of peers in the network used herein.
This distribution follows a power law.

One file consumes one unit of storage, so that the maximum
number of files that a peer can hold is 20. When the storage
of a peer is full and a request for a replica of a requested
file arrives at the peer, the oldest file is replaced by the re-
quested file (FIFO replacement discipline). How to displace
the files in storage of a peer by new one when the storage
is full would somewhat influence the storage load balancing
and the search performance considered here. However, we
use the same way of file displacement for several replica-
tion methods compared here and will not discuss the effects
of file displacement ways.

The query forwarding method used in the present pa-
per is a 16-walker random walk [9]. The 16-walker random
walk literally uses 16 walkers with a query that randomly
walks around peers from the peer making a query for a re-
quested file. Even if the 16 walkers start from a peer with
degree less than 16, each of the 16 walkers just randomly se-
lects one of neighboring peers of the peer as a next-hop peer.
The Time To Live (TTL) for every walker is 100 hops. In
addition, a walker may revisit the same peer more than once.
If one or more of the 16 walkers finds a requested file, then
the shortest path among the successful search paths that they
obtained is selected as the present successful search path and
the search is finished.

In fact, flooding as a query forwarding method is easy
to implement in unstructured P2P networks and often used
for search in them. Flooding forwards a query arriving at
a peer to all of neighboring peers of the peer, and provides
reliable search if TTL is set to be large. However, when
using flooding with a large value of TTL, the number of
query messages forwarded over a network becomes vast. It
is shown in [9] that combination of k-walker random walk as
a query forwarding method and a replication method based
on pre-acquired access frequency of files provides as reli-
able search as flooding with smaller number of query mes-
sages. We do not use the same replication method presented
in [9], but expect to achieve reliable search by the combina-
tion of 16-walker random walk and each of the replication
methods used in the present paper with smaller number of
query messages.



1972
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

In one run of the simulation model, the search for a re-
quested file is repeated 50,000 times in a one-by-one man-
ner, and a peer that makes a query is randomly chosen. Fur-
thermore, a file requested by each peer is randomly deter-
mined. This means that all types of files in the network have
an equal popularity.

The total number of file types in the network is 110.
However, only 100 file types exist in the initial state of the
network, and 10 files are allocated over the network with re-
spect to each file type. The initial distribution of files is ran-
dom, but identical, each time the simulation model is run.
Next, immediately after the 10,000 searches have finished,
another 10 file types are allocated over the network, where
the number of files of each type is 10. Similar to the initial
distribution, the distribution of the additional files is ran-
dom, but identical, each time the simulation model is run.

One reason for increasing the number of types of files
distributed over the network in the P2P simulation model
as mentioned above is that it is a general event in real P2P
file sharing networks. Another reason for this is to see how
load of peers that was caused by search for the initially dis-
tributed 100 types of files influences the search performance
for the lately distributed files. If we determine places of cre-
ating replicas of files by regarding storage utilization ratios
as load of peers, creating replicas of files in peers whose
storage is fully occupied by replicas of files is not promoted
because those peers are considered to be highly loaded. If
we define storage utilization ratios as load of peers in the
present paper, peers of high degree that play an important
role in quick and reliable file search first get their storage
to be full occupation by replicas of the initially distributed
files, and then they cannot hold replicas of the lately dis-
tributed files in their storage. Meanwhile, we define access
frequency to peers (the strength of query-trails) as load of
peers in the present paper and think it possible to explore
the performance trade-off by updating the access frequency
at short intervals in the situation of dynamic increasing and
decreasing the number of types of files in the network. How-
ever, since the access frequency to peers are not statistically
changed with the time in Sects. 4 and 5, it is not updated at
certain intervals.

4.2 Evaluation Criteria

We will basically use the evaluation criteria described in our
previous study [14]. In [14], the storage load was defined us-
ing not the distribution of storage usage ratios among peers,
but rather the number of storage accesses.

Let d, nw, and nr be the degree of a peer, the number of
times a file is written in the peer, and the number of times a
file is read from the peer, respectively. First, we plot three
types of points, (d, nw + nr), (d, nw), and (d, nr), with respect
to all of the peers in the network and then fit a straight line
to each of the three types of sets of points using the least
squares method. The slope of a line fitted to a set of points
of (d, nw + nr) represents the evaluation criterion of storage
load balancing (referred to hereinafter as SL). The smaller

the slope, the greater the ability of the replication method
in storage load balancing. Similar to SL, the slopes of two
lines fitted with sets of points of (d, nw) and (d, nr) represent
the evaluation criteria of writing and reading load balancing,
respectively (referred to hereinafter as WL and RL).

The evaluation criterion for the search performance is
based on the average number of hops needed to find re-
quested files during some period. The average number of
hops during some period is calculated on both the initially
allocated files and the additionally allocated files. As for
the initially allocated files, the number of hops from the
10,001th to 30,000th searches is taken into account for the
calculation of the average number of hops (referred to here-
inafter as HI). The reason for considering these 20,000
searches for the calculation of the average number of hops
is as follows. Since the number of files of each type is
quite small just after the files start being shared, the num-
ber of hops varies widely at the beginning of sharing those
files. So, we consider the number of hops observed in a
more stable situation, that is, from the 10,001th to 30,000th
searches. As for the additionally allocated files, the number
of hops from the 20,001th to 40,000th searches is taken into
account for the calculation of the average number of hops
(referred to hereinafter as HA). The reason for considering
these 20,000 searches is the same as the case of the initially
allocated files.

In addition to storage load and the average number of
hops, we observe the total number of times a file is written
for all of the peers in the network during all of the searches
(referred to hereinafter as NW) and the total number of files
in the network after all of the searches are finished (referred
to hereinafter as NF).

All of the evaluation criteria are shown in Table 1.

4.3 Methods for Comparison

We use two replication methods for comparison to QR.
One is Path Random Replication (referred to here-

inafter as PRR), which makes a replica of a requested file
only in peers on the present successful search path with fixed
probability. If the probability is set to 100%, then Path Ran-
dom Replication is equivalent to Path Replication, which
makes a replica of a requested file in all of the peers on
the present successful search path. QR attempts to achieve
better storage load balancing between peers than a repli-
cation method that places replicas of files on strong query
trails, while not significantly degrading the search perfor-

Table 1 Evaluation indexes.

SL Storage load balancing
WL Writing load balancing
RL Reading load balancing
HI The average number of hops

for initially distributed files
HA The average number of hops

for additionally distributed files
NW The total number of times of writing files
NF The total number of files



OHNISHI et al.: QUERY-TRAIL-MEDIATED COOPERATIVE BEHAVIORS OF PEERS IN UNSTRUCTURED P2P FILE SHARING NETWORKS
1973

mance compared to a replication method that places replicas
of files on strong query trails, by creating replicas of files in
peers adjacent to peers on strong query trails. Therefore,
the most relevant existing method for comparison is exactly
PRR, which creates replicas of files on strong query trails. In
addition, it is expected that the number of times that replicas
of the requested files are created is approximately the same
for PRR and QR with the same replication probability. If
this is true, we can say that the comparison of PRR and QR
with the same replication probability is fair.

The other replication method makes a replica of a re-
quested file in peers on the present successful search path
with a probability that is inversely proportional to the de-
gree of the peers, rp, as represented by rp = C

d ∈ [0, 1],
where rp is equal to one if C/d > 1, C is a constant, and
d is the degree of a peer. This method is called Replica-
tion with Probability Inversely proportional to the Degree of
a peer, or RPID. We proposed PRID for comparison with
QR. In RPID, the product of the probability of query arrival
at a peer and the replication probability is approximately the
same in every peer under the assumption that the number of
times that a query arrives at a peer is proportional to the de-
gree of the peer.

Actually, according to the random walk theory on net-
works [22], the probability of the arrival of a walker at a
node of degree d, pa, is given by pa = d

2m , where m is the to-
tal number of edges in the network. Therefore, when C = 1,
the value of rp× pa is the same regardless of the value of d.
That is, the best storage load balancing would be obtained
when C = 1. However, in order to reduce the number of
hops, the value of C has to be set to be greater than one, and
the appropriate value of C would depend on m, which is re-
lated to network size and topology. Thus, C is demonstrated
to be a parameter for exploring the trade-off points between
storage load balancing and search performance.

4.4 Experimental Results

We experimentally examine the performance of QR using
the simulation model of a P2P network and the evaluation
criteria explained in the previous section.

We use five replication probabilities for QR and PRR:
100%, 80%, 60%, 40%, and 20%. If the replication proba-
bility is the same for the two methods, then the number of
times that replicas of the requested files are created would
be approximately the same for the two methods. In addi-
tion, the replication probability of 100% should yield the
smallest number of hops for both methods.

On the other hand, as mentioned in the previous sec-
tion, the appropriate value of C of RPID that yields good
load balancing as well as fewer hops should depend on the
network configuration. Therefore, we will use various val-
ues of C, ranging from 1 to 625, which are the minimum and
the maximum degrees of the peers in the network used. Ac-
tually, RPID with C = 625 is the same as Path Replication.

For one replication probability or one value of C, we
independently run the simulation model with fixed topology

20 times and show the result as the average of 20 runs.
The observed data is shown in Table 2, in which only

the results of RPID for C = 1, 10, and 20 are shown. Ac-
cording to the preliminary experimental results, the aver-
age number of hops reaches a minimum at approximately
C = 20, starting from C = 1. Meanwhile, the values of C
of approximately 20 provide the best load balancing among
the values of C that yield almost the minimum average num-
ber of hops. Therefore, the values of C of approximately 20
can be regarded as the best among the values of C that yield
almost the minimum average number of hops.

Examples of lines that represent the storage loads of the
three replication methods used herein are shown in Fig. 6,
where the replication probability for QR and PRR is 100%
and the value of C in RPID is 20.

4.5 Discussion

We can observe from Table 2 that all of the replication meth-
ods used herein have the performance trade-off. That is to
say, if the load balancing performance becomes higher, the
search performance becomes lower and vice-versa. So, our
focus here is the degree of the performance trade-off induced
by each replication method. In a situation such that a certain
replication method yields better load balancing performance
(or better search performance) than other methods when the
search performance (or the load balancing performance) of
all of the methods are similar, we say that the replication
method yields a better trade-off point than the others. We
will use the phrase ‘a better trade-off point’ as this meaning
hereinafter.

We first compare the result of QR with that of PRR.
According to Table 2, we can see that QR is superior to
PRR in terms of storage load balancing for any replication
probability used, and that the average number of hops for
initially and additionally distributed files are approximately
the same. Therefore, we can say that QR yields better trade-
off points than PRR.

When these two methods have the same value of RP,
the values of NW for them are almost the same, that is, the
numbers of times of replications are almost the same be-
tween them. We can, therefore, say that comparison of the
results between them using the same value of RP is fair. This
simply suggests that the method of placing replicas of files
over the networks is significant for storage load balancing
among peers when the total number of replicas of files is
fixed.

The difference in storage load between the two meth-
ods is caused by the difference in writing load between the
two methods. According to Figs. 6 (a) and (b), while PRR
gave a linear increase in the number of both writing and
reading files with the degree of peers, QR caused the number
of file writes in peers of degree greater than approximately
100 to be approximately equal, although the increase in the
number of file writes in peers of degree less than approxi-
mately 100 was linear.

This discontinuous increase in the number of file writes



1974
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

Table 2 Experimental results. Each result represents the averaged result over 20 independent runs of
the simulation model. RP is the replication probability. C is the parameter of RPID. SL is the storage
load. RL is the reading load. WL is the writing load. HI is the average number of hops for initially
distributed files. HA is the average number of hops for additionally distributed files. NW is the total
number of times of writing files. NF is the total number of files in the network.

RP SL RL WL HI HA NW NF
QR 100% 2.008 1.654 0.354 2.186 2.145 116665 91812

80% 1.961 1.671 0.289 2.201 2.168 104957 87019
60% 1.922 1.695 0.226 2.232 2.191 92994 81494
40% 1.872 1.711 0.161 2.291 2.291 80965 75222
20% 1.789 1.692 0.096 2.510 2.556 68578 67526

PRR 100% 3.946 1.812 2.133 2.251 2.221 117613 76336
60% 3.218 1.921 1.297 2.294 2.269 92048 70059
20% 2.658 2.190 0.467 2.452 2.424 65923 60830

C SL RL WL HI HA NW NF
RPID 20 1.929 1.726 0.202 2.221 2.170 89596 79038

10 1.754 1.637 0.117 2.361 2.369 87306 82136
1 1.124 1.115 0.009 3.664 3.764 81478 82552

(a) QR (RP: 100%). (b) PRR (RP: 100%). (c) RPID (C = 20).

Fig. 6 Examples of lines representing storage load.

occurs as a result of the switching cases using Eq. (1) in
Sect. 3.2. According to a preliminary experiment, the aver-
age degree of peers adjacent to the peer of interest is approx-
imately 100. In addition, according to the random-walk the-
ory mentioned before, a peer was on the previous success-
ful search paths should be proportional to the degree of the
peer. Therefore, peers meeting Case 2 described in Sect. 3.2
should have degree greater than approximately 100, and ac-
tually the discontinuous occurs around degree of 100.

The ability to make the number of file writes in peers
with degrees of greater than approximately 100 equal is the
most important concept in storage load balancing. This writ-
ing load balancing occurs as a result of Eq. (2) in Sect. 3.2.
However, if we change the condition to determine the de-
gree that divides all of the peers into two replication strat-
egy groups, we could obtain results different from those ob-
tained here.

Next, Table 2 and Fig. 6 (c) show that RPID achieved
good writing load balancing. If we compare the results of
QR, PRR, and RPID when the values of NW for them are
similar to each other, for example, when the values of RP
for QR and PRR are 60% and the value of C for RPID is
20, we can see that their search performance are almost the
same, and the performance of access load balancing of QR
and RPID are similar but that of PRR is inferior to that of
QR and RPID. Therefore, we can say that QR and RPID
yield better trade-off points than PRR and also that QR and

RPID are similar in terms of ability in yielding better trade-
off points. In addition, QR with the replication probability
of 80% or 100% yields slightly better search performance
than RPID with C = 20, but slightly worse performance of
access load balancing than RPID with C = 20.

Since RPID makes a replica of a requested file in peers
on the present successful search path with a probability that
is inversely proportional to the degree of peers, the number
of file writes of RPID is expected to be approximately the
same in every peer in the case of C = 1, when the proba-
bility of query arrival at a peer is proportional to the degree
of the peer. However, RPID should require C to be set ap-
propriately, for example as C = 20, in order to handle the
increase in the average number of hops by making peers of
middle and high degrees have a sufficient number of files.

To verify this, we conducted an experiment with an-
other power-law network topology with the same number
of nodes as that in the simulation model described earlier,
but with fewer edges (approximately 13,000) than that in
the simulation model (20,000). The experimental results
are shown in Table 3. Since we have confirmed from pre-
liminary simulation experiments that the average number of
hops does not vary much in the case that C is greater than or
equal to 5, we show only the results of the values of C up to
10 in Table 3.

Table 3 shows that the appropriate value of C for this
network topology was approximately 5, which yields the



OHNISHI et al.: QUERY-TRAIL-MEDIATED COOPERATIVE BEHAVIORS OF PEERS IN UNSTRUCTURED P2P FILE SHARING NETWORKS
1975

Table 3 Experimental results used to verify that an appropriate value of
C in RPID depends on network topology. RP is the replication probability.
C is the parameter of RPID. SL is the storage load. RL is the reading load.
WL is the writing load. HI is the average number of hops for initially dis-
tributed files. HA is the average number of hops for additionally distributed
files.

RP SL RL WL HI HA

QR 100% 4.12 3.27 0.84 3.42 3.43
80% 4.01 3.30 0.70 3.48 3.56
60% 3.89 3.34 0.54 3.57 3.68
40% 3.78 3.38 0.39 3.78 3.94
20% 3.60 3.36 0.24 4.25 4.48

C SL RL WL HI HA

RPID 10 4.70 3.59 1.11 3.53 3.38
5 3.96 3.34 0.61 3.56 3.48
2 3.04 2.81 0.22 4.09 4.17
1 2.38 2.31 0.07 4.69 4.81

best load balancing (the smallest value of S L) among val-
ues of C that yield almost the minimum average number of
hops, which is greater than or equal to 5. This result is dif-
ferent from that for the network topology described earlier
(approximately C = 20). Since we cannot obtain the infor-
mation on the whole unstructured P2P network, if we use
RPID and attempt to achieve the minimum average number
of hops while keeping better storage load balancing as much
as possible, an adaptive mechanism for changing the value
of C should be embedded in the network so as to achieve
that.

Meanwhile, QR also needs to set an appropriate repli-
cation probability for a given network. However, it is not
as difficult as setting the value of C for RPID. As shown in
Tables 2 and 3, the smaller the replication probability of QR
is, the lower the search performance is and the higher the
storage load balancing is. That is to say, even if the network
configurations as a network topology are changed, QR with
the replication probability of 100% always yields the best
load balancing performance among all of the possible repli-
cation probabilities that yield the minimum average number
of hops.

Actually, as shown in Tables 2 and 3, QR and RPID
are similar in terms of ability in yielding better trade-off
points. For instance, we can see from Table 3 that QR with
the replication probability of 80% and RPID with C = 5
have similar search performance and performance of access
load balancing. However, the advantage of QR over RPID
is that as mentioned above, whatever the network configura-
tions are, we can easily understand the relationship between
the parameter value of QR and the performance of QR and
actually set the parameter value based on this understand-
ing. To obtain the minimum average number of hops while
achieving better storage load balancing as much as possible,
at least we can more easily set the parameter value of QR
than that of PRID.

Furthermore, RPID is basically effective only when a
random-walk based query forwarding method is used in the
first place. If we use other types of query forwarding meth-
ods, it would be difficult to obtain probability with which

each peer is on successful search paths. Meanwhile, QR
is expected to achieve at least local storage load balancing
even for other types of query forwarding method, because
its strategy is to create replicas of files in peers of low load
adjacent to peers of high load based on query trails gener-
ated by the query forwarding methods.

5. Method for Balancing the Load of Reading Files
from Storage

In the previous section, we proposed the first type of coop-
erative behaviors of peers, which is a replication method for
exploring better trade-off points between storage load bal-
ancing and search performances. When using a random-
walk-based query forwarding method, the probability of
query arrival to a peer is proportional to degree of the peer.
Therefore, even if the load of writing files in storage is bal-
anced among peers, and consequently every peer holds the
same number of files, the number of times that a file is read
from the storage of a peer results in the probability being
proportional to degree of the peer. If load balancing of read-
ing files from storage among peers can be achieved, we can
expect further storage load balancing among peers. In this
section, we propose a method for balancing the load of read-
ing files from storage among peers in return for a slight
degradation in search performance, which is the second type
of cooperative behaviors of peers.

5.1 Local Control of Providing Files by Peers

The proposed method for balancing the load of reading files
from storages requires a peer to determine whether it pro-
vides a requested file to a peer making a query based on
comparison of the load between the peer and its neighbors.
Here, we also estimate the state of loads of peers based on
query trails as the replication method presented in Sect. 3.
The query trails used here are the points, which is one of the
two types of query trails described in Sect. 3.

The procedures of the proposed method are as follows.
First, the method obtains a value of Rc ∈ [−1,+1] by Eq. (3),
which contains the total number of points that a peer of inter-
est assigned to its neighboring peers, r f , and that its neigh-
boring peers assigned to the peer of interest, ra.

Rc =

⎧
⎪⎪⎨
⎪⎪⎩

1 − ra

r f
if r f ≥ ra,

r f

ra
− 1 otherwise.

(3)

The load that the peer of interest assigned to its neighboring
peers is represented by r f and the load that its neighboring
peers assigned to the peer of interest is represented by ra.
Therefore, the smaller the value of Rc, the higher the load of
the peer of interest.

Second, using Rc below, the method determines
whether a peer holding a requested file provides a file ac-
cording to the rules, in which Tr is a parameter of the
method. This rule is illustrated in Fig. 7.

- If Rc ≥ Tr, then the peer provides the requested file.



1976
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

- If Rc < Tr, then the peer refuses to provide the re-
quested file.

The proposed method for balancing the load of reading
files from storages among peers is composed of Eq. (3) and
the above rules. We call the proposed method the Query-
trail-based File Provision, or QFP.

5.2 Simulation Results

We combine the proposed QFP with QR proposed in Sect. 3
and compare this combination method with QR through
simulations. As values of Tr, which is the parameter of
QFP, we used nine different values, −0.1, −0.2, −0.3, −0.4,
−0.5, −0.6, −0.7, −0.8, and −0.9. The replication probabil-
ity, which is the parameter of QR, is set to 100%. The simu-
lation model and its settings are the same as those shown in
Sect. 3. For each value of Tr, the simulation model was run
20 times, and the averaged results over 20 independent runs
were obtained with respect to storage load balancing and
search performance. These results are actually six types of
points, (SL, HI), (WL, HI), (RL, HI), (SL, HA), (WL, HA),
and (RL, HA), where SL, WL, RL, HI, and HA were shown
in Table 2. These six types of points are plotted in Fig. 8.
Figure 8 (a) shows the average number of hops for initially
distributed files, which are (SL, HI), (WL, HI), and (RL, HI).
Figure 8 (b) shows the average number of hops for addition-
ally distributed files, which are (SL, HA), (WL, HA), and
(RL, HA). In addition, Fig. 8 (c) shows the example graph
representing storage load for the case of Tr = −0.4.

Fig. 7 The rule to determine whether a peer provides a requested file.

(a) Relationship between storage
load and average number of hops for
initially allocated files when using a
variety of values of Tr .

(b) Relationship between storage
load and average number of hops for
additionally allocated files when us-
ing a variety of values of Tr .

(c) Examples of lines representing
storage load when using Tr = −0.4.

Fig. 8 Simulation results obtained by examining the combination method of QR and QFP for peers
with the same storage capacity.

According to Fig. 8, with the increase of Tr, the combi-
nation method of QR and QFP greatly improved the storage
load balancing performance by balancing well the load of
reading files from storage among the peers. Although in-
creasing the value of Tr caused an increase in the total num-
ber of file written to storage, the performance of balancing
the load of writing files to storage was not reduced signifi-
cantly because the performance of QR of load balancing of
writing files to storage is quite high.

In actual P2P file sharing networks, the file search time
that users can accept and the amount of traffic that networks
can accept are different. Therefore, achieving higher stor-
age load balancing with degradation of search performance
is not always good for users. However, if the acceptable file
search time and the acceptable amount of traffic are large,
the use of QFP can improve storage load balancing, and the
degree of improvement of the storage load balancing per-
formance can be regulated by the value of Tr. The value of
Tr should be determined by network operators of actual P2P
file sharing networks, considering the situations of the net-
works. Therefore, it is impossible to determine an appropri-
ate value of Tr for any situation of the networks. However,
in this case, a replication method is required that yields bet-
ter load balancing of writing files in storages together with
QFP.

6. Evaluation in Dynamic and Heterogeneous P2P En-
vironments

In the evaluation presented in Sects. 4 and 5, we assumed
a static and homogeneous P2P network in the simulation
model, though degree is different among the peers. In this
section, in contrast to Sects. 4 and 5, we assume a dynamic
and heterogeneous P2P network in the simulation model and
then evaluate QR and the combination method of QR and
QFP compared to PRR through simulations.

6.1 P2P Simulation Model

The number of peers in the simulation model used herein



OHNISHI et al.: QUERY-TRAIL-MEDIATED COOPERATIVE BEHAVIORS OF PEERS IN UNSTRUCTURED P2P FILE SHARING NETWORKS
1977

is set to be 10,000 as in Sects. 4 and 5. Every peer which
is present in the network at a certain moment conducts a
file search only once. A unit time is defined as time which
is required for all of peers present in the network at a cer-
tain moment to finish their file searches. RP (the replication
probability) for PRR, QR, and the combination method of
QR and QFP is set to be 100%. The other configurations of
the simulation are mentioned below.

• Topology
According to [30], the Gnutella which is one of the
representative unstructured P2P networks include peers
which frequently leave and join the network as well as
ones which stably stay in the network. Therefore, if
time for which the topology information is gathered
is long, peers which did not exist in the network at
the same time are incorrectly included in one network
topology due to frequent participation and departure of
peers. In addition, it is shown that the shapes of dis-
tribution of degree of peers depend on time for which
the topology information is gathered. Especially, when
the time for gathering is long, a power law network as
reported in [29] appears, and otherwise, the power law
network does not appear.
In this section, we consider a dynamic topology gener-
ation method which is involved in the P2P simulation
model based on the fact presented in [30] that there are
peers which frequently leave and join the network and
ones which stay in the network stably. We will examine
in the future work if the dynamically generated topolo-
gies in this section fit the results reported in [30].
In the topology generation considered herein, each
peer, at every unit time, joins the network according to
probability which was given to it in advance. The prob-
ability to determine if the i-th peer joins the network
at every time, ppi, is a uniform random real number
whitin [0.1, 1.0]. This realizes the existence of peers
that frequently leave and join the network as well as
stay in the network for a long period of time. We have
confirmed by preliminary simulations that about 5,500
out of 10,000 peers join the network at any moment.
In addition, a peer that has decided to join the network
makes an undirected link to other peer at any time. As
a result, the total number of links at a certain moment
is equal to the number of peers that join the network at
that moment.
When a peer joins the network for the first time, the
peer randomly selects a peer to which the joining peer
will link from among all of the peers present in the
network at that moment. Next, when the joining peer
leaves the network and then rejoins the network, it tries
to link to the same peer that it linked to before leaving
the network. If the same peer is not in the network,
the node randomly selects a peer to which the joining
node will link from among all of the peers present in
the network at that moment.

• Query Distribution
In the simulations herein, 1,000 types of files are
present in the network. Each type of file is held by 10
peers. Serial numbers are assigned to all of the 10,000
peers, and the 10(k − 1)-th to the 10k-th peers have the
k-th type of file initially, where k = 1, 2, · · · , 1,000. We
consider here that one file consumes one unit of storage
for record.
It is said that query distribution which represents how
frequently each file is queried to follows Zipf’s law [31]
in general. Zipf’s law is represented by Eq. (4).

f = kx−α, (4)

where f is the query generation ratio, x is the rank of
popularity of a file, and α stands for the degree of im-
balance of popularity among files. According to Zipf’s
law, a few files with high popularity have most ac-
cesses. In this section, we will decide the query gener-
ation ratio to files by following Zipf’s law and set the
parameter α = 1.0 in Eq. (4).
We simulate time-varying query distributions. The way
to simulate this is that the 301st to the 1000th types of
files are queried according to Zipf’s law from time 1 to
25 and the first to the 700th types of files are queried
according to Zipf’s law from time 26 to 50. The time-
varying query distributions used herein is shown in
Fig. 9.
• Storage Capacity

Storage capacity of each peer is proportional to its own
probability to join the network. The storage capacity
for the i-th peer, Ci, is represented by Eq. (5).

Ci = 100 × ppi, (5)

where Ci ∈ [10, 100].

6.2 Evaporation of Query Trails

We need to be able to estimate the storage load of peers
at any moment in a dynamic P2P environment considered
herein as precisely as possible. For this purpose, we con-
sider that the peers evaporate their query trails periodically.

Fig. 9 Dynamic change in query distribution. The solid line represents
query distribution for time 1 through 25. The dashed line represents query
distribution for time 26 through 50.



1978
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

(a) Success rate of search. (b) The average number of hops. (c) The balance indexes for reading,
writing, and storage loads.

Fig. 10 Simulation results of PRR, QR, and the combination method of QR and QFP with Tr = −0.5
in the dynamic and heterogeneous P2P environment. The results are the average over 20 independent
runs.

Concretely, the peers make the current values representing
the strength of query trails a half every 10 unit times. That
is, points that the peers assigned to their neighbors and the
number of times that the peers were on the previous success-
ful search paths are reduced to a half every 10 unit times.

When peers leave the network, the links of the peers
disappear and points that the peers assigned to their neigh-
bors are reset to be zero. The number of times that the peers
were on the previous successful search paths are not varied
at the timing of departure of the peers.

6.3 Evaluation Criteria

We use the Balance Index [13] as an index of storage load
balancing performance. The Balance Index, δ, is defined by
Eq. (6). The closer the value of δ is to 1, the more highly
access load is balanced among peers. On the other hand, the
closer the value is to 1/N, the more highly access load is
biased to particular peers.

δ =

(∑N
i=1 Xi

)2

(
N
∑N

i=1 X2
i

) , (6)

where Xi is the number of accesses to peer i and N is the
total number of peers. The number of accesses refers to the
number of times of reading files from the storage and that of
writing files in the storage. As Xi, we consider three kinds
of values, which are the number of times of reading files
from the storage (RL: Reading Load), that of writing files
in the storage (WL: Writing Load), and the sum of those
of reading files from the storage and of writing files in the
storage (SL: Storage Load). The Balance Index is calculated
at every unit time using RL, WL, and SL of all of the peers
including peers which are not present in the network at a
certain time.

We use the success ratio of file search as an index of
search performance, as well as the average number of hops
for successful searches. Those values are also calculated at
every unit time.

6.4 Results

Figure 10 shows the success ratio of file search, the average
number of hops for successful searches, and the Balance In-
dex for PRR, QR, and the combination of QR and QFP with
Tr = −0.5. The results are the average over 20 independent
simulation runs.

We can see from Fig. 10 (a)(b) that all of the methods
yielded almost the equal search performance. Furthermore,
we can also see that QR, and the combination of QR and
QFP with Tr = −0.5 yielded better storage load balancing
performance than PRR. These results suggest that QR, and
the combination of QR and QFP achieve both of storage load
balancing and high search performance even in dynamic and
heterogeneous P2P environments.

7. Conclusions

We presented two types of query-trail-mediated cooperative
behavior of peers for exploring the performance trade-off in
unstructured P2P networks. The origin of storage load im-
balance among peers in the present paper is random-walk-
based query forwarding on a given network topology. We
evaluated these two types of query-trail-mediated cooper-
ative behavior of peers assuming a static and almost ho-
mogeneous P2P environment through simulations. Simula-
tion results showed that the first type of cooperative behav-
ior provides equal or improved ability to explore trade-off
points between storage load balancing and search perfor-
mance, without the need for fine tuning parameter values,
compared to replication methods that require fine tuning of
their parameters values. In addition, the combination of the
second type and the first type of cooperative behavior yields
better storage load balancing performance with little degra-
dation of search performance. Furthermore, we evaluated
the two types of query-trail-mediated cooperative behaviors
of peers assuming a dynamic and heterogeneous P2P envi-
ronment through simulations. We showed that the two types
of cooperative behaviors of peers provide a high capabil-
ity to explore better trade-off points between storage load
balancing and search performance even in the dynamic and



OHNISHI et al.: QUERY-TRAIL-MEDIATED COOPERATIVE BEHAVIORS OF PEERS IN UNSTRUCTURED P2P FILE SHARING NETWORKS
1979

heterogeneous P2P environment.
In the present paper, the main cause of storage load im-

balance among peers was the use of the random-walk-based
query forwarding method. However, even for other types
of query forwarding methods, at least local storage load
balancing was expected by applying a strategy that creates
replicas of files in peers of low load adjacent to peers of high
load based on query trails generated by the query forwarding
methods. Furthermore, if we first reveal which peers adja-
cent to peers of high load queries are frequently forwarded
from the peers with high load in consideration of the charac-
teristics of used query forwarding methods and then design
rules on where to place replicas of files, we could reduce the
degradation of the search performance. In the case of using
random-walk-based query forwarding methods, a query that
arrived at a peer of high load is, with equal probability, for-
warded to its neighboring peers. In addition, if we introduce
local control of providing files by peers together with file
replication methods such as those described above, we can
expect higher storage load balancing performance with little
degradation in search performance.

Acknowledgments

The present study was supported by the Japan Society for
the Promotion of Science through a Grant-in-Aid for Young
Scientists (B) (22700077).

References

[1] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE
Communications Surveys & Tutorials, vol.7, no.2, pp.72–93, 2005.

[2] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: Scalable peer-to-peer lookup service for internet applica-
tions,” Proc. ACM SIGCOMM 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Commu-
nication, pp.149–160, San Diego, CA, USA, Aug. 2001.

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” Proc. ACM SIGCOMM
2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pp.161–172, San Diego,
CA, USA, Aug. 2001.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable decentralized ob-
ject location and routing for large-scale peer-to-peer systems,” Proc.
IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), pp.329–350, Heidelberg, Germany, Nov. 2001.

[5] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastruc-
ture for wide-area location and routing,” Technical Report UCB
CSD-01-1141, U.C.Berkeley, Berkeley, CA, USA, 2001.

[6] “LimeWire.” http://www.limewire.com/en
[7] I. Clarke, O. Snadberg, B. Wiley, and T.W. Hong, “Freenet: A

distributed anonymous information storage and retrieval system,”
Proc. Workshop on Design Issue in Anonymity and Unobservabil-
ity, 2000.

[8] E. Cohen and S. Shenker, “Replication strategies in unstructured
peer-to-peer networks,” Proc. ACM SIGCOMM 2002, 2002.

[9] Q. Lv, P. Cao, E. Cohen, S. Li, and K. Shenker, “Search and replica-
tion in unstructured peer-to-peer networks,” Proc. 16th International
Conference on Supercomputing, pp.84–95, 2002.

[10] L. Rong, “Multimedia resource replication strategy for a pervasive
peer-to-peer environment,” J. Comput., vol.3, no.4, pp.9–15, April

2008.
[11] S.M. Thampi and C.S. K, “Review of replication schemes for un-

structured p2p networks,” Proc. IEEE International Advance Com-
puting Conference IEEE (IACC’09), pp.794–800, Patiala, India,
March 2009.

[12] Y. Drougas and V. Kalogeraki, “A fair resource allocation algo-
rithm for peer-to-peer overlays,” 25th IEEE INFOCOM Conference,
pp.3085–90, 2006.

[13] D. Chiu and R. Jain, “Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks,” Computer
Networks and ISDN Systems, vol.17, no.1, pp.1–14, 1989.

[14] H. Yamamoto, D. Maruta, and Y. Oie, “Replication method for load
balancing on distributed storages in P2P networks,” IEICE Trans.
Inf. & Syst. - Special Section on New Technologies and their Appli-
cations of the Internet III, vol.E89-D, no.1, pp.171–181, Jan. 2006.

[15] D. Choffnes and F. Bustamante, “Taming the torrent: A practical ap-
proach to reducing cross-ISP traffic in peer-to-peer systems,” Com-
put. Commun. Review, vol.38, no.4, pp.363–74, Oct. 2008.

[16] Y.-M. Chiu and D.Y. Eun, “Minimizing file download time in
stochastic peer-to-peer networks,” IEEE/ACM Trans. Netw., vol.16,
no.2, pp.253–66, April 2008.

[17] E. Pournaras, G. Exarchakos, and N. Antonopoulos, “Load-driven
neighbourhood reconfiguration of Gnutella overlay,” Comput. Com-
mun., vol.31, no.13, pp.3030–9, 15 Aug. 2008.

[18] M. Srivatsa, B. Gedik, and L. Liu, “Large scaling unstructured peer-
to-peer networks with heterogeneity-aware topology and routing,”
IEEE Trans. Parallel Distrib. Syst., vol.17, no.11, pp.1277–93, Nov.
2006.

[19] W.-C. Liao, F. Papadopoulos, and K. Psounis, “Performance analysis
of BitTorrent-like systems with heterogeneous users,” Performance
Evaluation, vol.64, no.9-12, pp.876–91, Oct. 2007.

[20] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the
power of pull-based streaming protocol: Can we do better?,” IEEE
J. Sel. Areas Commun., vol.25, no.9, pp.1678–94, Dec. 2007.

[21] K. Ohnishi, H. Yamamoto, K. Ichikawa, M. Uchida, and Y. Oie,
“Storage load balancing via local interactions among peers in un-
structured P2P networks,” International Workshop on Peer-to-Peer
Infromation Management (P2PIM2006), CD-ROM, 8 pages, 2006.

[22] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge
University Press, 1995.

[23] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Opti-
mization by a colony of cooperating agents,” IEEE Trans. Syst. Man,
Cybern. B, Cybern. vol.26, no.2, pp.29–41, 1996.

[24] M. Dorigo and L.M. Gambardella, “Ant colony system: A cooper-
ative learning approach to the traveling salesman problem,” IEEE
Trans. Evol. Comput., vol.1, no.1, pp.53–66, 1997.

[25] G.D. Caro and M. Dorigo, “AntNet: Mobile agents for adaptive rout-
ing,” Proc. 31st Hawaii Int’l Conf. on System Sciences, pp.74–83,
1998.

[26] T. Bu and D. Towsley, “On distinguishing between internet power
law topology generators,” Proc. IEEE Infocom 2002, pp.638–647,
2003.

[27] A.L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol.286, pp.509–512, 1999.

[28] R. Albert and A.L. Barabasi, “Topology of evolving networks: Local
events and universality,” Phys. Rev. Lett., pp.5234–5237, 2000.

[29] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the gnutella net-
work,” IEEE Internet Comput., vol.6, no.1, pp.50–57, 2002.

[30] D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing unstructured
overlay topologies in modern P2P file-sharing systems,” IEEE/ACM
Trans. Netw. (TON), vol.16, no.2, pp.267–280, 2008.

[31] L. Adamic and B. Huberman, “The nature of markets in the world
wide web,” Quarterly Journal of Electronic Commerce, vol.1, no.1,
pp.5–12, 2000.



1980
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

Kei Ohnishi received the B.E., M.E. and
D.E. degrees from Kyushu Institute of Design,
Japan in 1998, 2000, and 2003, respectively. He
worked as a postdoctoral researcher for Univer-
sity of Illinois at Urbana-Champaign, Kyushu
Institute of Technology, and Human Media Cre-
ation Center/Kyushu. Since October 2007, he
has been an associate professor at Kyushu In-
stitute of Technology. His research interests in-
clude P2P networks and soft computing tech-
niques. He is a member of IEEE, IPSJ, and

SOFT.

Hiroshi Yamamoto received M.E. and D.E.
degrees from Kyushu Institute of Technology,
Iizuka, Japan in 2003 and 2006, respectively.
From April 2006 to March 2010, he worked at
FUJITSU LABORATORIES LTD., Kawasaki,
Japan. Since April 2010, he has been an As-
sistant Professor in the Department of Electri-
cal Engineering, Nagaoka University of Tech-
nology. His research interests include com-
puter networks, distributed applications, and
networked services. He is a member of the

IEEE.

Masato Uchida received B.E., M.E.
and D.E. degrees from Hokkaido University,
Sapporo, Hokkaido, Japan in 1999, 2001 and
2005, respectively. In 2001, he joined NTT
Service Integration Laboratories, Tokyo, Japan.
Since August 2005, he has been an Associate
Professor in Network Design Research Center,
Kyushu Institute of Technology.

Yuji Oie received B.E., M.E. and D.E.
degrees from Kyoto University, Kyoto, Japan
in 1978, 1980 and 1987, respectively. From
1980 to 1983, he worked at Nippon Denso Com-
pany Ltd., Kariya. From 1983 to 1990, he was
with the Department of Electrical Engineering,
Sasebo College of Technology, Sasebo. From
1990 to 1995, he was an Associate Professor in
the Department of Computer Science and Elec-
tronics, Faculty of Computer Science and Sys-
tems Engineering, Kyushu Institute of Technol-

ogy, Iizuka. From 1995 to 1997, he was a Professor in the Information
Technology Center, Nara Institute of Science and Technology. Since April
1997, he has been a Professor in the Department of Computer Science
and Electronics, Faculty of Computer Science and Systems Engineering,
Kyushu Institute of Technology. His research interests include performance
evaluation of computer communication networks, high speed networks, and
queueing systems. He is a fellow of the IPSJ and a member of the IEEE.


