
IEICE TRANS. COMMUN., VOL.E93–B, NO.3 MARCH 2010
525

PAPER Special Section on New Generation Network towards Innovative Future Society

Dynamic and Decentralized Storage Load Balancing with Analogy
to Thermal Diffusion for P2P File Sharing∗

Masato UCHIDA†a), Kei OHNISHI††b), Kento ICHIKAWA†c), Masato TSURU††d), Members,
and Yuji OIE††e), Fellow

SUMMARY In this paper we propose a file replication scheme inspired
by a thermal diffusion phenomenon for storage load balancing in unstruc-
tured peer-to-peer (P2P) file sharing networks. The proposed scheme is de-
signed such that the storage utilization ratios of peers will be uniform, in the
same way that the temperature in a field becomes uniform in a thermal dif-
fusion phenomenon. The proposed scheme creates replicas of files in peers
probabilistically, where the probability is controlled by using parameters
that can be used to find the trade-off between storage load balancing and
search performance in unstructured P2P file sharing networks. First, we
show through theoretical analysis that the statistical behavior of the storage
load balancing controlled by the proposed scheme has an analogy with the
thermal diffusion phenomenon. We then show through simulation that the
proposed scheme not only has superior performance with respect to bal-
ancing the storage load among peers (the primary objective of the present
proposal) but also allows the performance trade-off to be widely found.
Finally, we qualitatively discuss a guideline for setting the parameter val-
ues in order to widely find the performance trade-off from the simulation
results.
key words: P2P file sharing networks, storage load balancing, thermal
diffusion

1. Introduction

Recently, peer-to-peer (P2P) network models have attracted
a great deal of attention. The concept of the P2P network
model is completely different from that of a conventional
client-server network model. While a conventional server-
client network model explicitly distinguishes hosts provid-
ing services (servers) from hosts receiving services (clients),
a P2P network model does not assign fixed roles to hosts.
Hosts composing P2P networks, referred to as peers, can be
both servers and clients, so that P2P networks can theoret-
ically function as an autonomous, distributed, and coopera-
tive system.

One of application of P2P networks that is of interest
is a distributed storage system for file sharing. A distributed

Manuscript received July 31, 2009.
Manuscript revised November 5, 2009.
†The authors are with Network Design Research Center, Kyu-

shu Institute of Technology, Tokyo, 100-0011 Japan.
††The authors are with the Dept. of Computer Science & Elec-

tronics, Kyushu Institute of Technology, Iizuka-shi, 820-8502
Japan.

∗The present paper is an extended version of our previous paper
that was presented at Inter-Perf 2006 [1].

a) E-mail: m.uchida@ndrc.kyutech.ac.jp
b) E-mail: ohnishi@cse.kyutech.ac.jp
c) E-mail: ichikawa@ndrc.kyutech.ac.jp
d) E-mail: tsuru@ndrc.kyutech.ac.jp
e) E-mail: oie@cse.kyutech.ac.jp

DOI: 10.1587/transcom.E93.B.525

storage system for file sharing provides a large amount of
storage by accumulating the unused storage of hosts, which
enables large amounts of data to be stored and shared with-
out the need for a costly file server. Although there exist
several forms of P2P networks for file sharing [2], in the
present study we focus on unstructured P2P networks that
do not have a mechanism to manage file locations.

Since unstructured file sharing P2P networks do not
have a mechanism to manage file locations, a query dis-
tribution mechanism is needed to find requested files. An
approach to enhance file search performance of the query
distribution mechanism is to make replicas of files so as
to increase the total number of files in the network. Al-
though further enhancement of file search performance can
be achieved by making replicas of files in specific peers
through which search queries pass frequently, such behavior
causes the bias of storage load to the specific peers. Also,
since storage load balancing in the networks means that sev-
eral files are not put on specific peers through which search
queries pass frequently, and therefore, it leads to the degra-
dation of file search performance. Therefore, there must be
a trade-off between storage load balancing and search per-
formance in unstructured file sharing P2P networks. This
trade-off should be taken into consideration for controlling
unstructured file sharing P2P networks.

The present paper focuses on a file replication scheme.
Although an original purpose of the file replication is to im-
prove file search performance, the present paper considers
the cancellation of storage load bias caused as a counter-
action of the improvement of file search performance. We
propose a file replication scheme that considers storage load
balancing inspired by nature, in which the order appears
to be maintained in an autonomous and distributed man-
ner. The statistical behavior of the proposed file replica-
tion scheme has an analogy with the phenomenon of ther-
mal diffusion. Furthermore, the proposed scheme includes
parameters to widely find the trade-off between storage load
balancing and search performance existing in unstructured
P2P file sharing networks. We conduct a theoretical anal-
ysis to reveal an analogy between the proposed replication
scheme and a thermal diffusion equation, and experimen-
tally examine the ability of the proposed scheme not only to
balance the storage load among peers but also to find the per-
formance trade-off. The ability to widely find the trade-off
relationship is important because it is impossible to uniquely
define the universally best trade-off point due to various user

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

526
IEICE TRANS. COMMUN., VOL.E93–B, NO.3 MARCH 2010

requirements and operated policies for storage load balanc-
ing and search performance.

The present paper is organized as follows. Section 2
briefly describes related research. Section 3 proposes a file
replication scheme inspired by thermal diffusion and shows
analytically that the proposed scheme has an analogy with a
thermal diffusion equation. The proposed scheme is experi-
mentally evaluated in Sects. 4 and 5. Finally, Sect. 6 presents
the conclusions obtained through the analysis.

2. Related Studies

Replication schemes have been developed mainly for un-
structured P2P networks that do not have a means of manag-
ing file locations [3], [4]. This is because searching in such
networks is blind, and replicas of files distributed over the
networks should contribute to quick and reliable file search-
ing. However, these studies focused only on search effi-
ciency and did not consider load imbalance among peers as
a trade-off for search efficiency. On the other hand, load bal-
ancing schemes have been developed mainly for structured
P2P networks that have a means of managing file locations
such as a distributed hash table (DHT) [5], [6]. This is be-
cause fixed file locations provided by P2P using DHT can
be the cause of load imbalance among peers, depending on,
for example, how the identifier space is constructed, how the
subspace is assigned to peers, and differences in popularity
between files.

Our previous study [7] focused on replication schemes
in unstructured P2P file sharing networks. Our objective
was not only to achieve good search performance, as in
previous studies on unstructured P2P networks, but also to
achieve storage load balancing, as in previous studies on
structured P2P networks. Here, the storage load of a peer is
defined as the storage utilization ratio which is the ratio of
the consumed capacity to the total capacity. These replica-
tion schemes were designed mainly to achieve storage load
balancing, but by adjusting their parameter values, we found
the trade-off between search performance and storage load
balancing. In particular, we proposed three different repli-
cation schemes in our previous paper: Path Random Repli-
cation, Path Adaptive Replication, and Path Adaptive Repli-
cation with Priority Level. All these schemes are based on
Path Replication that creates replicas of files in peers on the
search path (with probability 1). However, these schemes
are all probabilistic replication schemes that create replicas
of files in peers on the search path as well as Path Replica-
tion and differ in how they decide the probability with which
file replicas are created, where the search path is formed by
random walk-based query forwarding mechanism.

The replication scheme proposed in the present paper
also creates file replicas in peers on the search path prob-
abilistically, where the search path is formed by random
walk-based query forwarding mechanism. The proposed
scheme is mainly intended to achieve storage load balanc-
ing, but also to find a wide range of trade-off points between
search performance and storage load balancing by adjust-

ing its parameter values. The proposed scheme is based on
Path Adaptive Replication (PAR). The key concept of PAR
is that the probability with which a replica of a requested file
is created in a peer at location x on the search path is deter-
mined using the storage utilization ratio of the peer at time
t, L(x, t) (0 ≤ L(x, t) ≤ 1). This probability is hereinafter
referred to as the file replication ratio. The file replication
ratio is given by the following equation:

P(x, t) = 1 − 1 − e−ξL(x,t)

1 − e−ξ
, (1)

where ξ is a tunable parameter to vary the average value of
replication ratios M ∈ [0, 1], and ξ is obtained from M by

evaluating M =
∫ 1

0
P(x, t)dL. In addition, P(x, t) satisfies

the following conditions:

• When the storage load of the peer is high, the replica-
tion ratio becomes low
• When the storage load of the peer is low, the replication

ratio becomes high

This scheme allows each peer to independently control stor-
age utilization by means of changing the file replication ratio
to achieve fair storage utilization among all of the peers. Pa-
rameter ξ is adjusted not only for storage load balancing, but
also for better search performance, and therefore for explor-
ing the trade-off between storage load balancing and search
performance.

Unlike PAR, the file replication scheme proposed in the
present paper is designed to use the storage utilization ratios
of peers adjacent to the focus peer, thus achieving network-
wide storage load balancing. More specifically, the pro-
posed scheme determines the file replication ratio in the fo-
cus peer by using the difference between its storage utiliza-
tion ratio and those of its neighboring peers. Here, neigh-
boring peers are defined as ones 1-hop away from the focus
peer.

Dynamic load balancing schemes with only local peer
communication as in the proposed replication system, re-
ferred to as diffusive load balancing schemes, have been in-
vestigated primarily with respect to distributed computing
[8]–[10]. These systems basically rely on a diffusion equa-
tion. Load balancing in distributed computing usually re-
sults in greater computing efficiency. Since maximum com-
puting efficiency is the only primary objective, no trade-off
exists. However, in P2P file sharing networks, better load
balancing can cause deterioration in the primary objective
of search efficiency, resulting in a trade-off. This suggests
that load balancing schemes used in distributed computing,
including parameter tuning schemes, might not be suitable
for direct application to load balancing in P2P file sharing
networks. In addition, while conventional diffusive load bal-
ancing schemes ‘diffuse’ the direct causes of load, such as
computational tasks, among nodes, the proposed replication
scheme does not use such a direct approach to achieve load
balancing.

UCHIDA et al.: DYNAMIC AND DECENTRALIZED STORAGE LOAD BALANCING WITH ANALOGY TO THERMAL DIFFUSION FOR P2P FILE SHARING
527

3. Storage Load Balancing Inspired by Thermal Diffu-
sion

3.1 Motivation

Search performance must be enhanced in unstructured P2P
file sharing networks, because they have no file location
management system. This may be achieved by replicating
files over the network, allowing a query forwarding mecha-
nism to find requested files quickly and reliably. This is re-
ferred to as a file replication scheme. One of the simplest file
replication schemes is Path Replication that creates a replica
of a requested file on the current search path provided by a
query forwarding method [3], [4].

For query forwarding, random walk-based methods are
often employed for unstructured P2P file sharing networks
because of their ease of implementation. Considering a
random walk on an arbitrary network, the probability with
which a random walker stays at a node is shown to be pro-
portional to the degree of the peer [11]. Therefore, random
walk-based query forwarding methods are likely to include
peers of high degree in the paths that they create. If repli-
cation schemes that create a replica of a requested file on
the current search path are used together with random walk-
based query forwarding methods, more files are replicated in
high-degree peers than in low-degree peers. The advantage
of Path Replication with random walk-based query forward-
ing for enhancing search performance has been discussed in
[4]. Although this situation is good for enhancing search
performance, the storage load would be biased to higher de-
gree peers, and as a result, the P2P network might be un-
stable and unreliable. Of course, the disadvantage on the
storage load bias would be increased when flooding-based
query forwarding is used.

Considering into the above mentioned advantage and
disadvantage, as in our previous study [7], in the present
study, we attempt to find a file replication scheme based on
Path Replication that achieves storage load balancing using
random walk-based query forwarding method. Here, the
definition of load balance in this paper is allocating load
uniformly independent of the number of edges a node has.
Since file search in unstructured file sharing P2P networks
function in an autonomous and distributed manner, it is de-
sirable for storage load balancing to function in the same
manner.

With respect to autonomous and distributed storage
load balancing, the natural world is a great source of in-
spiration because nature itself appears to be ordered in this
way. We can therefore look at natural physical phenomena,
especially the phenomenon of diffusion, and make an anal-
ogy between the mechanism of diffusion and storage load
balancing. Diffusion is a common physical phenomenon,
manifesting itself as heat diffusion through a steel plate or a
drop of colored ink spreading through water.

Next, we will examine the phenomenon of thermal dif-
fusion, and consider the analogy between thermal diffusion

and the proposed storage load balancing scheme. When heat
diffuses through a substance having a thermal gradient, the
diffusion is governed only by the local thermal gradient and
conductivity, according to a differential equation describing
thermal diffusion. This implies that thermal diffusion oc-
curs only through linked local behaviors based on the local
thermal gradient. An analogy may be made between ther-
mal diffusion and storage load balancing by file replication
in unstructured P2P file sharing networks, by considering
the steel plate to be a P2P network, considering a part of the
plate to be several peers in the network, and considering heat
to be the storage load of the peers. In addition, file repli-
cation corresponds to heating of the steel plate. Whereas
in thermal diffusion, heat provided by heat sources diffuses
through a substance, in the storage load balancing model,
storage load ‘diffuses’ through peers on the current search
path.

However, there are several differences between file
replications for storage load balancing and thermal diffu-
sion. For instance, whereas thermal diffusion is a phe-
nomenon in which the entire steel plate is involved, the file
replication locations considered herein are limited to peers
on search paths. In the following we will present a method
by which to apply the analogy of thermal diffusion to storage
load balancing in P2P networks while taking this difference
into account.

3.2 Basic Concept

In thermal diffusion, every local non-uniform distribution
of temperatures becomes a uniform distribution. Similarly,
we suppose that in storage load balancing, every local non-
uniform distribution of storage utilization ratios becomes a
uniform distribution based on the difference in storage uti-
lization ratios between the focus peer and its neighboring
peers.

Suppose that a network simply consists of three peers
A, B, and C, and logical links are made between peers B and
A and between peers A and C, and are therefore aligned in
the order B, A, C. Next, we introduce the following expres-
sion, which represents the difference between the storage
utilization ratio of peer A and the average storage utilization
ratio of its neighboring peers B and C:

L(B, t) + L(C, t)
2

− L(A, t) (2)

Expression (2) suggests that the lower the storage utilization
of peer A (second term) compared to the average storage uti-
lization of its neighboring peers (first term), the bigger the
value, and vice versa. In addition, Expression (2) takes its
largest value 1 when L(B, t) = L(C, t) = 1 and L(A, t) = 0
and its smallest value −1 when L(B, t) = L(C, t) = 0 and
L(A, t) = 1. Thus, we can measure the relationship between
the storage utilization ratio of peer A and the average of
the storage utilizations of its neighboring peers B and C by
means of Expression (2).

In terms of storage load balancing, the creation of repli-

528
IEICE TRANS. COMMUN., VOL.E93–B, NO.3 MARCH 2010

cas of files in peer A should be actively performed when the
value of Expression (2) becomes larger, and vice versa. If
we consider only the storage utilization ratios of individual
peers, we cannot embed the above storage load balancing
strategy in a file replication scheme. Thus, for better stor-
age load balancing, it is desirable that the determination of
whether or not replicas of files are created in peers must
be done by taking into account the relationship between the
storage utilization ratio of a focus peer and its neighboring
peers.

Based on the above discussion, we will consider below
an actual method for observing the difference between the
storage utilization ratio of a focus peer and its neighboring
peers.

First, we introduce an operator D to L(x, t). Although
the operator D is used only with L(x, t) in this paper, the
introduction of the operator is helpful for understanding an
interesting meaning of the proposed scheme (see Sect. 3.4).
The operator D derives a new function D · L(x, t) from the
function L(x, t), where D · L(x, t) is defined as the difference
between the storage utilization ratio of the peer and the av-
erage of its neighboring peers. That is, D · L(x, t) is defined
as the following equation:

D · L(x, t) =

∑d(x)
i=1 L(xi, t)

d(x)
− L(x, t), (3)

where xi (i = 1, . . . , d(x)) denotes a peer adjacent to peer
x and d(x) denotes the degree of peer x. Equation (3) with
d(x) = 2 is equivalent to Expression (2). As with Expression
(2), D·L(x, t) takes (i) its largest value 1 when the storage uti-
lization ratio of peer x is 0 (i.e., L(x, t) = 0) and the storage
utilization ratios of all of its neighboring peers are 1 (i.e.,
L(xi, t) = 1) and takes (ii) its smallest value −1 when the
storage utilization ratio of peer x is 1 (i.e., L(x, t) = 1) and
the storage utilization ratios of all of its neighboring peers
are 0 (i.e., L(xi, t) = 0). This range of values is represented
by the following inequality:

−1 ≤ D · L(x, t) ≤ 1. (4)

In the present paper, we propose a scheme that adjusts
the replication ratio P(x, t) of peer x using D · L(x, t). More
specifically, the replication ratio P(x, t) is designed to meet
the following conditions:

• When the storage utilization ratio of peer x is lower
than its neighboring peers (i.e., the value of D · L(x, t)
is large), the replication ratio P(x, t) becomes higher
• When the storage utilization ratio of peer x is higher

than its neighboring peers (i.e., the value of D · L(x, t)
is small), the replication ratio P(x, t) becomes lower

In the next section, we will provide several example
definitions of P(x, t) that meet the above conditions.

3.3 Replication Scheme for Storage Load Balancing

As a simple example, we consider a replication ratio P(x, t)

that increases linearly with D · L(x, t). In this case, P(x, t) is
represented by the following equation:

P(x, t) =
1
2
+

1
2

D · L(x, t), (5)

where 0 ≤ P(x, t) ≤ 1. Equation (5) suggests that P(x, t)
becomes high when the average storage utilization of peers
adjacent to peer x is higher than that of peer x, and vice
versa. In Sect. 3.5, we will show that the storage distribution
described with this replication ratio has basic similarities to
thermal diffusion.

Equation (5) gives a linear variation of P(x, t) for all
values of D · L(x, t). However, from a practical point of
view, P(x, t) should be more flexible, such that the varia-
tion of P(x, t) is more sensitive to the variation of D · L(x, t)
over certain areas of its range. For example, Eq. (5) can be
modified as follows:

P(x, t) =
1
2
+

1
2

tanh
(
μ + λ tanh−1 D · L(x, t)

)
, (6)

where Eq. (6) with λ = 1 and μ = 0 is equal to Eq. (5).
Graphs of Eq. (6) with various sets of values of (μ, λ), which
will be used for simulation experiments in Sect. 4, are shown
in Fig. 1. As shown in Fig. 1, λ is a parameter that can be
used to adjust the sensitivity of P(x, t) to D · L(x, t). In ad-
dition, μ is a parameter used to determine the replication
ratio of peers not only after perfect storage load balancing
is achieved, but also when λ = 0, because from Eq. (6) the
replication ratio ρ for the case in which D · L(x, t) = 0 for all
of the peers or λ = 0 is as follows:

ρ =
1
2
+

1
2

tanh(μ) (7)

In particular, when λ = 0, the proposed replication scheme
is equivalent to Path Random Replication with a replication
ratio ρ, where Path Random Replication creates a replica of
a requested file in peers on the current search path with a
fixed replication ratio.

3.4 Relationship between Operator D and Laplacian

Here, we will show that the operator D can be regarded as a
sort of Laplacian, which is a second-order differential. This
parallel is fundamental in discussions concerning the anal-
ogy between the proposed file replication scheme and ther-
mal diffusion.

We assume the same simple network as that shown in
Sect. 3.2. Equation (2) can be transformed into the following
equation:

L(B, t) + L(C, t)
2

− L(A, t)

=
1
2
{(L(B, t) − L(A, t)) − (L(A, t) − L(C, t))} (8)

This equation suggests that Eq. (2) corresponds to a (dis-
crete) second-order derivative of L(x, t) on x when we as-
sume a row of peers A, B, and C to be an axis. The impor-
tant point is that the three peers A, B, and C are aligned, and

UCHIDA et al.: DYNAMIC AND DECENTRALIZED STORAGE LOAD BALANCING WITH ANALOGY TO THERMAL DIFFUSION FOR P2P FILE SHARING
529

Fig. 1 P(x, t) with a variety of sets of values of (μ, λ), as defined by Eq. (6).

because of this Eq. (2) can be regarded as a second-order
derivative on the axis including peers A, B, and C.

Next, we assume more general P2P networks, in which
connection between peers is not limited to a series connec-
tion. In this case, D · L(x, t) is represented by the following
equation:

D · L(x, t)

=

∑d(x)
i=1 L(xi)

d(x)
− L(x)

=
1

d(x)(d(x) − 1)

∑
i< j

{(L(xi) − L(x)) + (L(x j) − L(x))}

(9)

This equation suggests that when we consider a row of xi,
x, and x j (xi-x-x j) with respect to all of the combinations
of i and j (i < j) to be an axis, D · L(x, t) represents the
sum of (discrete) second-order derivatives on xi, j in L(x, t),
where xi, j corresponds to the axis of xi-x-x j. This means
that the continuous representation of operator D is given by
the d(x)(d(x) − 1)-th-order Laplacian:

∑
i< j

∂2

∂x2
i, j

. (10)

Note that the replication ratio P(x, t) defined in the pre-
vious section becomes high when D · L(x, t) > 0 and low
when D · L(x, t) < 0. In other words, the replication ratio
P(x, t) becomes high when the storage utilization ratio on
a P2P network is convex at peer x, compared to its neigh-
boring peers, and becomes low when the storage utilization
ratio on a P2P network is concave at peer x, compared to its
neighboring peers.

3.5 Analogy to Thermal Diffusion

In this section, we will analytically show that the proposed
replication scheme is analogous to a thermal diffusion equa-
tion. The analogy is validated by the fact that an essential
term in a thermal diffusion equation appears in a statistical

expression for the proposed replication scheme. Further-
more, a term representing a continuously active heat source
also appears in the statistical expression. The heat source
term indicates that the total amount of storage load in a net-
work increases steadily. We will discuss these points in de-
tail later.

We will define several symbols prior to the analysis.
First, let E[X] be an expectation value for random variable
X, and let E[X|Y] be a conditional expectation value for ran-
dom variable X when random variable Y is given.

We will define further random variables by assuming
in the following analysis that file search in a P2P network is
stochastic (non-deterministic). Let L(x, t) be a random vari-
able that represents the storage utilization ratio of peer x at
time t. The analysis is valid only when 0 ≤ L(x, t) ≤ 1. In
addition, let R(f) be a random variable that represents the
size of file f , which can be the target of a search. Further-
more, let I(x, t) be a random variable that indicates whether
peer x is on the current search path at time t. That is, I(x, t)
is 1 when it is on the current search path, and 0 otherwise.

Therefore, the product of two random variables R(f)
and I(x, t) can be interpreted as the rise of the storage uti-
lization of peer x at time t for the case in which a stochastic
file search is performed in a certain network. The product
value depends on the network topology and the file search
path (depending on the file search method). Finally, let C(x)
be a random variable that represents the storage capacity of
peer x.

The analysis begins with calculation of the storage uti-
lization ratio at time t + Δt, i.e., a unit of time Δt after time
t. The result is as follows:

E[L(x, t + Δt)|L(x, t),R(f), I(x, t),C(x)]

= L(x, t) + P(x, t)
R(f)I(x, t)Δt

C(x)
(11)

This equation holds for any P(x, t). Substituting Eq. (5) for
P(x, t) in Eq. (11), we obtain the following equation:

E[L(x, t + Δt)|L(x, t),R(f), I(x, t),C(x)] − L(x, t)
Δt

530
IEICE TRANS. COMMUN., VOL.E93–B, NO.3 MARCH 2010

=
R(f)I(x, t)

2C(x)
+

R(f)I(x, t)
2C(x)

D · L(x, t). (12)

The simplest representation of a thermal diffusion
equation when we let T (x, t) be the temperature of position
x at time t is as follows:

∂T (x, t)
∂t

= K
∂2

∂x2
T (x, t), (13)

where K is a positive constant value called diffusion coef-
ficient. The right-hand side of this equation has the same
form as the second term in the right-hand side of Eq. (12),
which implies that the proposed replication scheme is able
to balance the storage load among peers. In addition, the
first term in Eq. (12) implies that an effect similar to a con-
stant heat source exists in the P2P network.

If we substitute Eq. (6), in place of Eq. (5), for P(x, t)
in Eq. (11), and apply a Taylor expansion to the substituted
Eq. (11) for D · L(x, t) ∼ 0 and μ ∼ 0, we obtain the first-
order approximation of the substituted Eq. (11), as follows:

E[L(x, t + Δt)|L(x, t),R(f), I(x, t)] − L(x, t)
Δt

=
R(f)I(x, t)(1 + μ)

2C(x)
+
λR(f)I(x, t)

2C(x)
D · L(x, t). (14)

Since the second term on the right-hand side of Eq. (14) cor-
responds to the diffusion of heat, we can expect that increas-
ing the value of λ improves the performance for storage load
balancing. In addition, since the first term on the right-hand
side of Eq. (14) corresponds to a heat source, we can expect
that increasing the value of μ improves the search perfor-
mance.

4. Evaluation

In the previous section, we showed analytically that the
proposed replication scheme can be expected to achieve
network-wide storage load balancing because it is strongly
analogous to thermal diffusion. Here, we will evaluate the
proposed replication scheme through simulation, with re-
spect to not only storage load balancing but also search per-
formance. The replication ratio used in the evaluation is
given by Eq. (6).

In addition, we will evaluate whether the proposed
replication scheme has a better ability to find a wider
range of trade-off points between storage load balancing
and search performance. This is because there are vari-
ous possible demands for the network performance accord-
ing to the satisfaction of users and the policies of network
operators. For example, certain network operators/users
might attach importance to the search performance, while
another network operators/users might attach importance to
the load-balancing performance. Thus, it is important to
show that the proposed replication scheme has a better abil-
ity to achieve various possible demands for the network per-
formance.

Fig. 2 Distribution of the degree of peers in the simulated network. This
distribution follows a power law.

4.1 Simulation Model

The configuration of the P2P network simulation model is
described as follows. The total number of peers present in
the network is 10,000, and the total number of links between
peers is 20,000. The distribution of the degree of peers in
the network is shown in Fig. 2. The topology of the P2P net-
work in the simulation model used is generated by the algo-
rithm described in [12]. The topology follows a power law
[13]–[15] with respect to the distribution of degree. Since
the Gnutella network is a representative unstructured net-
work that follows an approximate power law with respect to
the distribution of the degree of peers [16], it is valid to use
the network topology following a power law for the inves-
tigation of unstructured P2P networks. The present paper
considers static network topology.

The maximum storage capacity of every peer is 40.
One file consumes one unit of storage, so that the maximum
number of files that a peer can hold is 40. When the storage
capacity of a peer is full and a request for a replica of a re-
quested file arrives at the peer, the oldest file is replaced by
the requested file (i.e., a FIFO replacement method is used).

The query forwarding method used in the present paper
is a 16-walker random walk [4]. The walk uses 16 walkers,
each with a query, which randomly walk around peers start-
ing at the peer making the query for a requested file. The
smallest number of hops among the number of hops that 16
walkers need in order to find the requested file is taken as the
number of hops in the current file search. All 16 walkers are
allowed up to 100 hops in one file search, and it is possible
for a walker to revisit the same peer more than once. In each
run of the simulation, the search for a requested file is indi-
vidually repeated 50,000 times, and the peer that makes the
query is chosen randomly. Furthermore, the file requested is
randomly determined each time. This means that all types
of files in the network have an equal chance of being chosen.

The total number of file types in the network is 100,
with 10 files initially allocated over the network for each
type of file. This initial distribution of 1,000 files is random,

UCHIDA et al.: DYNAMIC AND DECENTRALIZED STORAGE LOAD BALANCING WITH ANALOGY TO THERMAL DIFFUSION FOR P2P FILE SHARING
531

but is determined in the same way each time the simulation
model is run.

4.2 Evaluation Criteria

Using random walk-based query forwarding methods, high-
degree peers are more likely to be exposed to high load than
low-degree peers, so the load imbalance among groups of
peers of the same degree should be evaluated. Let s(d) be the
average storage utilization ratio of peers of degree d in the
network. The evaluation criterion for storage load balancing
is defined by the standard deviation of s(d):√√√dmax∑

d=1

(s(d) − s̄)2

dmax
, (15)

where dmax represents the maximum degree of the network
and s̄ is the average of s(d), defined as

∑dmax

d=1 s(d)/dmax.
Here, we use the standard deviation of s(d) at the moment at
which the average storage utilization ratio of all of the peers
in the network, called H̄, has just exceeded 0.025, 0.05, and
0.1, denoted by s1, s2, and s3, respectively. Here, a smaller
standard deviation represents better storage load balancing
ability.

The evaluation criterion for search performance is de-
fined as the number of hops needed to find the files requested
at the moment at which H̄ has just exceeded 0.025, 0.05, and
0.1, denoted by h1, h2, and h3, respectively. Here, a smaller
number of hops represents better search performance.

Three pairs of coordinates 〈s1, h1〉, 〈s2, h2〉, and 〈s3, h3〉
are obtained after running the simulation model. The model
is run 200 times for each scenario, and the average values
of those three points over 200 runs, 〈s̄1, h̄1〉, 〈s̄2, h̄2〉, and
〈s̄3, h̄3〉, are plotted. The plotted graph may show the ability
of the selected load balancing scheme in exploring the trade-
off between storage load balancing and search performance.

4.3 Results

The proposed replication scheme has two parameters, μ and
λ, as shown in Eq. (6). Tuning the values of the two pa-
rameters is necessary in order to find the trade-off between
storage load balancing and search performance sufficiently.
While search performance depends on μ, storage load bal-
ancing ability depends on λ. Therefore, we test 12 sets
of (μ, λ), being all combinations of μ = {−0.5, 0, 0.5} and
λ = {1, 5, 10, 20}.

We use two replication schemes proposed in our pre-
ceding work [7] for comparison with the proposed repli-
cation scheme. One scheme is Path Random Replication
(PRR), which makes a replica of a requested file only in
peers on the current search path with fixed probability. The
fixed probability is denoted by M, which is the same as
in Path Adaptive Replication (PAR), which is explained in
detail in Sect. 2. The second scheme is PAR. These two
schemes have only one parameter, which is M ∈ [0, 1]. As
values for M, 0.1, 0.2, · · · , and 0.9 are used.

Plotting 〈s̄1, h̄1〉, 〈s̄2, h̄2〉, and 〈s̄3, h̄3〉 for all three
schemes used gives the graphs shown in Fig. 3.

4.4 Discussion

4.4.1 Fundamental Performance

With respect to storage load balancing ability, Fig. 3 shows
that, depending on set of values of (μ, λ), the proposed repli-
cation scheme gives better performance than PRR or PAR
for any parameters and for every observation snapshot, that
is, H̄ = 0.025, H̄ = 0.05, and H̄ = 0.1. Therefore,
our primary objective, which is to achieve better ability in
balancing the storage load among peers in an autonomous
and distributed manner, could be achieved. However, the
search performance of the proposed scheme is almost the
same as or slightly worse than PRR or PAR. These results
suggest that the trade-off between storage load balancing
and search performance is similar in the three replication
schemes used. Therefore, we need to determine how widely
the three schemes are able to find this trade-off.

Figure 3 indicates that the proposed scheme shows a
wider spread of plotted points (or trade-off points) along
both axes (load balancing and search performance) than
PRR or PAR. That is, by changing the parameter values, the
proposed method can find almost identical trade-off points
to PRR and PAR, as well as trade-off points that PRR and
PAR cannot find. Therefore, the proposed scheme is the best
for exploring a wide range of trade-off points.

The scale of the horizontal axes (i.e., the variation
range of storage load balancing performance) of the three
graphs in Fig. 3 is the same regardless of the value of H̄.
The reason for this can be explained as follows. First, the
probability that a random walker (i.e., query) stays at a peer
is shown to be proportional to the degree of the peer [11].
In addition, the peer that makes the query and the file that is
requested by the peer are chosen randomly each time in the
simulation. This indicates the frequency of requests for the
creation of replicas arrive at peers each time does not depend
on H̄. Second, the storage load imbalance among peers that
has appeared each time is determined by the frequency of
requests for the creation of replicas, which does not depend
on H̄ as shown in the above, and the file replication ratio
(i.e., the acceptance ratio of the request for the creation of
replica). The proposed file replication scheme attempts to
uniform this storage load imbalance among peers by con-
trolling the file replication ratio. The file replication ratio
in a peer is uniquely defined by the storage load imbalance
among peers, which is defined by the difference between its
storage utilization ratio and those of its neighboring peers
(i.e., D · L(x, t)), as shown in Eq. (6). The differences in
the storage utilization ratio among peers does not depend
on H̄ by definition unless H̄ is close to 0 or 1 as explained
in the end of this paragraph. Therefore, the file replication
ratio does not depend on H̄, nor does the behavior of the
proposed file replication scheme. This indicates the storage
load imbalance among peers realized by the proposed file

532
IEICE TRANS. COMMUN., VOL.E93–B, NO.3 MARCH 2010

Fig. 3 Simulation results. The solid lines indicate the smallest standard deviations of storage utiliza-
tion ratios that PRR and PAR could achieve. The broken lines indicate the smallest numbers of hops
that PRR and PAR could achieve.

replication scheme does not depend on H̄. Finally, the stor-
age load balancing performance is evaluated based on the
standard deviation of s(d) of which the definition does not
depend on H̄, as shown in Eq. (15). The above three remarks
indicate that the storage load balancing performance, which
is evaluated based on the standard deviation of s(d), does not
depend on H̄. However, the storage load balancing perfor-
mance must depend on H̄ when most of the peers experience
L(x, t) ∼ 0 (resp. 1) (i.e., H̄ ∼ 0 (resp. 1)). That is, if H̄ ∼ 0
(resp. 1), then the standard deviation of s(d) becomes close
to 0.

On the other hand, the scale of the vertical axes (i.e.,
the variation range of the search performance) of the three
graphs in Fig. 3 is different. That is, the scale decreases and
narrows as the value of H̄ increases. This is because the
number of hops needed to find the requested files decreases
as the value of H̄ increases since the search performance
improves as the number of files in the network increases.

4.4.2 Guideline on Settings of Parameter Values

The proposed replication scheme has two parameters μ and
λ. Therefore, the trade-off point realized between storage
load balancing and search performance would vary based
on the tuning of the two parameters. In the following, we
present a qualitative discussion about the relationship be-
tween the values of parameters and the performance of the
proposed scheme using the simulation results. Although
qualitative guideline of parameter tuning does not offer a
solid method that can ensure an exact achievement of a spe-
cific trade-off point, it is still useful as a first step to realize
a parameter tuning method with trial-and-error manner.

In the simulation experiments, a random walk-based
query forwarding method was used. According to an exist-
ing theory on random walk in a network [11], the probabil-
ity with which a walker with a query approaches a node is
proportional to the degree of the node. Therefore, we can
consider that a request for the creation of a replica of a file
arrives (via a walker) more frequently at peers of higher de-

gree. In addition, since the initial load states of all of the
peers were approximately the same in the experiments, the
peers are considered to have experienced D · L(x, t) ∼ 0, at
least during the early stage of the file searches. Consider-
ing these two features collectively, high-degree peers would
mostly experience D · L(x, t) ∼ 0 and D · L(x, t) < 0, and
low-degree peers would mostly experience D · L(x, t) ∼ 0
and D · L(x, t) > 0, at least during the early stage of the file
searches.

First, suppose that we fix the value of μ and vary
the value of λ. Since the second term in the right-hand
side of Eq. (14) corresponds to heat diffusion, increasing
the value of λ would improve the storage load balancing
performance. At the same time, improving storage load
balancing by increasing λ would cause a degradation of
search performance, because at high-degree peers (at which
search queries frequently arrive), the number of files be-
comes smaller. Next, suppose that we vary the value of
μ and fix the value of λ. Since the first term in the right-
hand side of Eq. (14) corresponds to a heat source, increas-
ing the value of μ would improve the search performance.
From Fig. 1, we can see that P(x, t) for D · L(x, t) ∼ 0 and
D · L(x, t) < 0, which higher degree peers mostly experi-
ence, becomes larger as μ increases relative to P(x, t) for
D · L(x, t) ∼ 0 and D · L(x, t) > 0, which lower degree peers
mostly experience. That is, we consider that the ratio be-
tween a replication ratio of a lower degree peer (PL) and
that of a higher degree peer (PH), PH/PL, increases with the
value of μ. The probability of a query arriving at a higher
degree peer (QH) is higher than that of a query arriving at a
lower degree peer (QL), i.e., QH > QL. Coupling this obser-
vation with the previous observation, we can consider that
the ratio between the storage utilization ratio of the lower
degree peer (UL ∝ QL × PL) and that of the higher degree
peer (UH ∝ QH × PH), UH/UL, becomes higher with the
value of μ, and consequently the storage load balancing per-
formance becomes worse. In summary, we can hypothesize
as follows:

UCHIDA et al.: DYNAMIC AND DECENTRALIZED STORAGE LOAD BALANCING WITH ANALOGY TO THERMAL DIFFUSION FOR P2P FILE SHARING
533

Fig. 4 Relationship between values of μ and λ and performance of proposed scheme.

• With the value of μ fixed, the bigger the value of λ, the
better the storage load balancing performance and the
worse the search performance.
• With the value of λ fixed, the bigger the value of μ, the

worse the storage load balancing performance and the
better the search performance.

The simulation results do support the idea that with the
value of μ fixed, the load balancing performance improves
with the value of λ, while the search performance deterio-
rates. Typical examples are shown in Figs. 4(a) and (b). On
the other hand, the results partially support the idea that with
the value of λ fixed, the load balancing performance dete-
riorates with the value of μ, while the search performance
improves. Typical examples are shown in Figs. 4(c) and (d).
This hypothesis seems to be satisfied only when H̄ = 0.025
and H̄ = 0.05. This could be because the assumption that
the peers stay around D · L(x, t) ∼ 0 is correct only in these
situations.

5. Advanced Evaluation

In the evaluation of Sect. 4, the factors to cause load bias
among peers were network topology and a query forward-
ing method. In this section, we will examine a stronger
load bias among peers by using a query forwarding method
that differs from the method used in Sect. 4 and examine
whether the proposed replication scheme can balance the
storage load even in such a case.

The query forwarding method used in this section is
the degree proportional-based k-walker random walk. In the
degree proportional-based k-walker random walk, the next
hop peer of each walker is selected from the neighboring
peers by the probability that is proportional to the degree of
the peers, while the original k-walker random walk uses a
random selection policy for the next hop peer. The prob-
ability for selecting peer xi as the next hop peer of peer x
in the degree proportional-based k-walker random walk is
given by

d(xi)∑d(x)
i=1 d(xi)

, (16)

where xi denotes a peer adjacent to peer x and d(x) denotes
the degree of peer x.

We performed the same simulation as that in Sect. 4
using the degree proportional-based k-walker random walk
rather than the original k-walker random walk. The simula-
tion results are shown in Fig. 5.

The simulation results in Fig. 5 are similar to those
in Fig. 3, so the argument given in the previous sections
is mostly valid in this section as well. That is, com-
pared to other replication schemes, even when the degree
proportional-based k-walker random walk, which would
promote a storage load unbalance, is used, the proposed
scheme has a better ability to balance storage load among
peers and finds a wider range of trade-off points between
storage load balancing and search performance.

However, the simulation results given in this section are
different from those of the discussion in the previous section
in the case of H̄ = 0.025. That is, as shown in Fig. 5(a),
the search performance is poor when the value of μ is the
largest (i.e., μ = 0.5). In the following, we will discuss this
difference and show that it can be seen as a kind of transient
state before sufficient storage load balancing is achieved.

High-degree peers are more likely to be on the search
path in the degree proportional-based k-walker random walk
compared to the original k-walker random walk. Therefore,
requests for the creation of replicas arrive more frequently at
high-degree peers in the degree proportional-based k-walker
random walk than the original k-walker random walk. In ad-
dition, the replication ratio P(x, t) is large when the value of
μ is large. Therefore, when the value of μ is large, replica
creation is concentrated on high-degree peers until the value
of D · L(x, t) (i.e., P(x, t)) becomes sufficiently close to 0.
The concentration is increased particularly when the value
of H̄ is small, because D · L(x, t) is not sufficiently close
to 0 in the early stage of the simulation. That is, low-
degree peers hardly have replicas in the degree proportional-
based k-walker random walk when the value of H̄ is small.
Therefore, in the degree proportional-based k-walker ran-
dom walk, if the search path happens to be composed mostly
of low-degree peers which have few replicas, the number
of hops for file search increases greatly, although, in many

534
IEICE TRANS. COMMUN., VOL.E93–B, NO.3 MARCH 2010

Fig. 5 Simulation results for the degree proportional-based k-walker random walk. The solid lines
indicate the smallest standard deviations of storage utilization ratios that PRR and PAR could achieve.
The broken lines indicate the smallest numbers of hops that PRR and PAR could achieve.

cases, file search would succeed with a small number of
hops because file search performance is highly dependent
on high-degree peers. We can justify the above hypothe-
sis by observing the number of hops needed to find the re-
quested file in the early stage of a simulation. That is, we
confirmed that the number of hops often becomes 100 hops
for the entire period only when μ = 0.5, where 100 hops
is the maximum number of hops allowed in one file search.
An extremely large number of hops for file search makes the
mean number of hops large. Note that the above-mentioned
tendency is decreased when the value of λ is large because
the bias of the number of created replicas among peers are
eliminated in such a case.

The simulation results presented in this section and in
the previous section indicate that the relationships between
the parameter values and the performance depends on the
states: the state in which only a few replicas of files are dis-
tributed over the network, that in the state in which replicas
are sufficiently distributed, and that in the medium state. The
reason why the relationship in the state in which replicas
of files are sufficiently distributed over the network differs
from those of the other states is that the storage utilization
ratios of some peers have reached one, and their states of
storage load cannot be distinguished. This situation is not
desirable because a storage load balancing mechanism does
not work fully. Therefore, for example, using the storage
access ratio per unit time rather than the storage utilization
ratio would make it possible not only to guess the relation-
ship but to maintain a stable state in which a storage load
balancing mechanism works as well.

6. Conclusion

The present paper has introduced a file replication scheme
that is analogous to thermal diffusion and is intended to bal-
ance the storage load among peers in an autonomous and
distributed manner. The results of the theoretical analysis
have shown that the statistical behavior of the storage load

balancing controlled by the proposed scheme has an anal-
ogy with a thermal diffusion phenomenon. In addition, the
relationship between the parameter values of the proposed
scheme and its ability with respect to load balancing and
searching has been discussed. The results of the simulation
experiments have shown that, compared to other replication
mechanisms, the proposed mechanism is not only better at
balancing the storage load among peers, which was the pri-
mary objective, but also a wider range of trade-off points be-
tween storage load balancing and search performance can be
found by adjusting two parameters in the proposed scheme.

Acknowledgments

This work was partly supported by the National Institute
of Information and Communications Technology, and the
Japan Society for the Promotion of Science, Grant-in-Aid
for Scientific Research (S) (No. 18100001).

References

[1] M. Uchida, K. Ohnishi, K. Ichikawa, M. Tsuru, and Y. Oie, “Dy-
namic storage load balancing with analogy to thermal diffusion for
p2p file sharing,” Proc. Workshop on Interdisciplinary Systems Ap-
proach in Performance Evaluation and Design of Computer & Com-
munications Systems (Inter-Perf 2006), 6 pages, Pisa, Italy, Oct.
2006.

[2] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE
Communications Surveys & Tutorials, vol.7, no.2, pp.72–93, Sec-
ond Quarter 2005.

[3] E. Cohen and S. Shenker, “Replication strategies in unstructured
peer-to-peer networks,” Proc. ACM SIGCOMM 2002 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pp.177–190, Pittsburgh, PA, USA, Aug.
2002.

[4] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replica-
tion in unstructured peer-to-peer networks,” Proc. 16th international
conference on Supercomputing, pp.84–95, New York, USA, June
2002.

[5] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load balancing in structured P2P systems,” Proc. 2nd International

UCHIDA et al.: DYNAMIC AND DECENTRALIZED STORAGE LOAD BALANCING WITH ANALOGY TO THERMAL DIFFUSION FOR P2P FILE SHARING
535

Workshop on Peer-to-Peer Systems (IPTPS’03), LNCS2735, pp.68–
79, Berkeley, CA, USA, Feb. 2003.

[6] D.R. Karger and M. Ruhl, “Simple efficient load balancing algo-
rithms for peer-to-peer systems,” Proc. sixteenth annual ACM sym-
posium on Parallelism in algorithms and architectures, pp.36–43,
Barcelona, Spain, June 2004.

[7] H. Yamamoto, D. Maruta, and Y. Oie, “Replication method for load
balancing on distributed storages in P2P networks,” IEICE Trans.
Inf. & Syst., vol.E89-D, no.1, pp.171–180, Jan. 2006.

[8] G. Cybenko, “Dynamic load balancing for distributed memory
multiprocessors,” Parallel and Distributed Computing, vol.7, no.2,
pp.279–301, Oct. 1989.

[9] J. Boillat, “Load balancing and poisson equation in a graph,” Con-
currency Practice and Experience, vol.2, no.4, pp.289–313, Dec.
1990.

[10] A. Corradi, L. Leonardi, and F. Zambonelli, “Diffusive load bal-
ancing policies for dynamic applications,” IEEE Concurrency, vol.7,
no.1, pp.22–31, 1999.

[11] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge
University Press, 1995.

[12] T. Bu and D. Towsley, “On distinguishing between internet power
law topology generators,” Proc. IEEE Infocom 2002, pp.638–647,
New York, NY, USA, June 2003.

[13] A.L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” SCIENCE, vol.286, pp.509–512, Oct. 1999.

[14] R. Albert and A.L. Barabasi, “Topology of evolving networks: Local
events and universality,” Phys. Rev. Lett., pp.5234–5237, Dec. 2000.

[15] L.A. Adamic, R.M. Lukose, A.R. Puniyani, and B.A. Huberman,
“Search in power-law networks,” Phys. Rev., vol.E64, 046135, 2001.

[16] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the gnutella
network,” IEEE Internet Comput., vol.6, no.1, pp.50–57, Jan./Feb.
2002.

Masato Uchida received the B.E., M.E.
and D.E. degrees from Hokkaido University,
Hokkaido, Japan in 1999, 2001, and 2005, re-
spectively. In 2001, he joined NTT Service In-
tegration Laboratories, Tokyo, Japan. Since Au-
gust 2005, he has been an Associate Professor
in Network Design Research Center, Kyushu In-
stitute of Technology, Kyushu, Japan. His re-
search fields include computer communication
networks and information-based learning the-
ory. He is a member of the ACM.

Kei Ohnishi received Bachelor, Master, and
Doctor Degrees of Design from Kyushu Insti-
tute of Design, Japan in 1998, 2000, and 2003,
respectively. He worked as a postdoctoral re-
searcher for University of Illinois, Kyushu In-
stitute of Technology, and Human Media Cre-
ation Center/Kyushu. Since October 2007, he
has been an associate professor at Kyushu In-
stitute of Technology. His research interests in-
clude soft computing techniques and P2P net-
works. He is a member of the SOFT.

Kento Ichikawa recieved B.Sc., M.Sc. and
D.Sc. from University of Tokyo, Japan in 1999,
2001, and 2005, respectively. He has worked
as a postdoctoral researcher for Kyushu Institute
of Technology since April 2005. His research
interests include network science and theoretical
physics. He is a member of the Physical Society
of Japan.

Masato Tsuru received B.E. and M.E.
degrees from Kyoto University, Japan in 1983
and 1985, respectively, and then received his
D.E. degree from Kyushu Institute of Technol-
ogy, Japan in 2002. He worked at Oki Elec-
tric Industry Co., Ltd., Nagasaki University,
and Telecommunications Advancement Organi-
zation of Japan. In 2003, he joined the De-
partment of Computer Science and Electronics,
Kyushu Institute of Technology as an Associate
Professor, and then has been a Professor in the

same department since April 2006. His research interests include perfor-
mance measurement, modeling, and management of computer communi-
cation networks. He is a member of the IEEE, ACM, IPSJ, and JSSST.

Yuji Oie received B.E., M.E. and D.E. de-
grees from Kyoto University, Kyoto, Japan in
1978, 1980 and 1987, respectively. From 1980
to 1983, he worked at Nippon Denso Company
Ltd., Kariya. From 1983 to 1990, he was with
the Department of Electrical Engineering, Sa-
sebo College of Technology, Sasebo. From 1990
to 1995, he was an Associate Professor in the
Department of Computer Science and Electron-
ics, Faculty of Computer Science and Systems
Engineering, Kyushu Institute of Technology,

Iizuka. From 1995 to 1997, he was a Professor in the Information Technol-
ogy Center, Nara Institute of Science and Technology. Since April 1997,
he has been a Professor in the Department of Computer Science and Elec-
tronics, Faculty of Computer Science and Systems Engineering, Kyushu
Institute of Technology. His research interests include performance eval-
uation of computer communication networks, high speed networks, and
queueing systems. He is a fellow of the IPSJ and a member of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

