
IEICE TRANS. COMMUN., VOL.E88–B, NO.12 DECEMBER 2005
4517

LETTER IEICE/IEEE Joint Special Section on Autonomous Decentralized Systems

Hop-Value-Based Query-Packet Forwarding for Pure P2P∗∗

Masato UCHIDA†∗a) and Shinya NOGAMI†, Members

SUMMARY In pure peer-to-peer (P2P) file sharing applications and
protocols using a flooding-based query algorithm, a large number of control
packets (query packets) are transmitted on the network to search for target
files. This clearly leads to a degradation of communication quality on the
network and terminals as the number of users of the application increases.
To solve such problems, this paper proposes: (1) a unified framework to
describe a wide variety of query algorithms for pure P2P and (2) a new
query algorithm based on this framework. Our framework determines the
number of destinations for query packets based on the hop value recorded
in received query packets. Simulation results revealed that the proposed
query algorithm can reduce the overhead in the flooding-based query algo-
rithm and k-random walks without decreasing the success rate of retrieval
regardless of the density of target files in the network.
key words: P2P, query algorithm

1. Introduction

The past few years have seen the development of several
new file sharing applications and protocols based on the pure
peer-to-peer (P2P) model, which does not have any servers
to support clients. In this model, every client acts as a server.
These so-called “servents” (servent = server + client) form
a decentralized and unstructured application-level overlay
network on the physical layer, by connecting to existing ser-
vents. Several pure P2P applications pass messages (pack-
ets) that implement file sharing among servents on the over-
lay network. For example, query packets for target files
are broadcast on the overlay network. This flooding-based
query-packet-forwarding algorithm (flooding-based query
algorithm) is clearly not scalable because it will obviously
lead to an overhead, such as an overwhelming amount of
query traffic and a high CPU load, as more servents join the
overlay network. Against this background, the possibility
of multiple random walks (k-random walks) on a pure P2P
network to find target files has been discussed [1]. In the k-
random walks, a requesting node sends k query packets, and
each query packet takes its own random walk on the net-
work. Although another search algorithm has been studied
[2], it needs an additional function to cache query results

Manuscript received March 25, 2005.
Manuscript revised June 23, 2005.
†The authors are with NTT Service Integration Laboratories,

NTT Corporation, Musashino-shi, 180-8585 Japan.
∗Presently, with Network Design Research Center, Kyushu In-

stitute of Technology.
∗∗An earlier version of this paper was presented at the 18th In-

ternational Workshop on Communications Quality & Reliability
(CQR 2004).

a) E-mail: m.uchida@ndrc.kyutech.ac.jp
DOI: 10.1093/ietcom/e88–b.12.4517

that cannot be obtained by the usual pure P2P protocols.
However, there may be better query algorithms than flood-
ing and k-random walks that are based on the usual pure P2P
protocols. Therefore, we first provide a unified framework
that can describe a wide variety of query algorithms. Based
on this framework, we then propose a new query algorithm
that can reduce the overhead without decreasing the success
rate of retrieval regardless of the density of the target files in
the network.

Our framework includes the flooding-based query al-
gorithm because it can determine the number of destina-
tions for query packets based on the hop value recorded in
received query packets. Note that the hop value is informa-
tion that the query packet usually has. We evaluated various
query algorithms within the framework (flooding, k-random
walk, proposed) by simulation, where the algorithms ran on
a model drawn from actual topology data [3].

2. Related Work

2.1 Flooding-Based Query Algorithm

Several pure P2P applications, such as Gnutella and its
clones, pass query packets that implement file sharing
among servents on the overlay network. Specifically, each
servent forwards the received query packets to all of its
neighbors. Each packet’s header contains a time-to-live
(TTL) field. TTL is used in the same fashion as in the IP pro-
tocol: at each hop its value is decremented until it reaches
zero, at which point the packet is discarded. That is, TTL
is the number of times the packet will be forwarded by ser-
vents before it is removed from the network. Each packet’s
header also contains a hop field. The hop value is incre-
mented at each hop. That is, the hop value is the number of
times the packet has been forwarded.

2.2 k-Random Walks

Since the flooding-based query algorithm cannot be scaled
because each retrieval clearly generates a large amount of
query traffic, the so-called “k-random walks” was proposed
as an alternative [1]. In the k-random walks, the requesting
node sends k query packets, and each query packet takes its
own random walk on the network.

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers

4518
IEICE TRANS. COMMUN., VOL.E88–B, NO.12 DECEMBER 2005

3. Unified Framework for Query Algorithms

3.1 Proposed Framework

In this section, we first provide a unified framework that
allows us to describe a wide variety of query algorithms.
Then, we give examples of how algorithms are set up within
the framework.

The key idea of the proposed framework is to utilize
the hop value h recorded in the received query packets when
they are forwarded. That is, a servent forwards the received
query packet to some of its neighbors according to h, while
a servent that uses the flooding-based query algorithm for-
wards the received query packet to all of its neighbors re-
gardless of h.

The proposed framework is outlined in Fig. 1, where
the crossed circle is connected with the circled circle, closed
circles, and open circles. When the crossed circle receives
a query packet (squared square) whose TTL is t and hop
value is h from the circled circle, it performs the following
procedure, where the nodal degree of the crossed circle is
n + 1.

Step 1: If t = 0, the crossed circle drops the query packet;
otherwise, it determines the number of destinations
N(n, h).

Step 2: If N(n, h) ≤ n, the crossed circle selects N(n, h) ser-
vents (closed circles) randomly from n servents without
multiplicity (Fig. 1, left); otherwise it selects N(n, h)
servents (closed circles) randomly from the n servents
with multiplicity (Fig. 1, right), excluding the servent
that transmitted the incoming query packet (circled cir-
cle).

Step 3: The crossed circle decrements t and increments h of
the received query packet. Then, it forwards the query
packets (crossed squares) to the selected servents.

We can construct various query algorithms based on the
above by setting N(n, h) appropriately. For example, the def-
inition enables us to describe both the flooding-based query
algorithm and k-random walks within the framework by set-
ting N(n, h) as follows.

Fig. 1 Query packet forwarding algorithm for N(n, h) ≤ n (left) and
N(n, h) ≥ n (right). (circle: servent, square: query packet)

N1(n, h) =


n for h ≤ d1

0 for h > d1
, (d1: constant),

N2(n, h) =


k for h ≤ d2

1 for h > d2
, (d2, k: constant).

Obviously, N1(n, h) is equivalent to the flooding-based query
algorithm, and N2(n, h) is equivalent to the k-random walks
when d2 = 0. This means that the proposed framework is a
natural extension of the notion of query algorithms.

3.2 Proposed Query Algorithm

In this section, we propose a new query algorithm based on
the proposed framework. The following three conditions are
required to construct a better query algorithm than flooding
and k-random walks: high success rate of retrieval (Condi-
tion 1) and low overhead (Conditions 2 and 3), where m ≥ n
and g ≥ h.

Condition 1: For the same hop value, the larger the nodal
degree is, the larger the number of query packet desti-
nations should be.

N(m, h) ≥ N(n, h) ≥ 0

Condition 2: For the same nodal degree, the larger the hop
value is, the smaller the number of query packet desti-
nations should be, because if the hop value is large, a
lot of servents have already received query packets.

0 ≤ N(n, g) ≤ N(n, h)

Condition 3: The larger the nodal degree is, the more the
number of query packet destinations should be de-
creased, because if the nodal degree is large, query
packets are more likely to be forwarded to servents that
have already received ones.

0 ≤ N(n, h) − N(n, g) ≤ N(m, h) − N(m, g)

Note that the flooding-based query algorithm (i.e., N1(n, h))
satisfies only Condition 1 and k-random walks (i.e.,
N2(n, h)) satisfies only Condition 2.

Now, we propose a new query algorithm based on the
above framework. It is defined as follows.

N3(n, h) =


n for h ≤ d3⌈
n

1
1+h−d3
⌉

for h > d3
,

(d3: constant).

In N3(n, h), the number of destinations for query packets that
will be forwarded decreases as the hop value grows depend-
ing on the nodal degree. We can easily confirm that Condi-
tions 1, 2, and 3 are satisfied by N3(n, h). Although there are
many examples similar to N3(n, h), we found heuristically
that N3(n, h) gives better performance than the examples we
tried in simulations. Finding the best form of N(n, h) theo-
retically is still an open problem.

LETTER
4519

4. Simulation

In this section, we consider the appropriate forms of N(n, h)
that can reduce the number of query packets without de-
creasing the success rate of retrieval. To achieve this,
we compared the performance of N1(n, h), N2(n, h), and
N3(n, h) through simulation. Though N(n, h) can take other
values, we can obtain a rough approximation by evaluating
these forwarding algorithms.

4.1 Preparation

We performed the simulation on the proposed framework
as follows. Here, we refer to the “crawl number 5 network
[3]–[6]†” as the target P2P network for simulation, which is
an unstructured power-law random graph with about 2300
servents, where the set of servents forming the network is
described by C. The topology of a crawl number 5 network
is illustrated in Fig. 2. This “crawl network” is a snapshot of
a small portion of a real P2P network that contains servents
in which a kind of Gnutella software is installed.

Step 1: Place a target file, which will be searched for, on
all servents included in C with probability (density)
p, where the number of arrangement patterns of tar-
get files is described by NumPlace. That is, we used
various arrangement patterns of target files to evaluate
the performance of query algorithms because the per-
formance depends on the position of the target files.
Note that the mean value of the number of target files
in C is |C| × p, where the mean value is calculated over
NumPlace arrangement patterns of target files.

Step 2: For each arrangement patterns of target files, ran-
domly select from C a servent that will search for the
target file, where the number of selections is Num-
Query.

Fig. 2 Network topology of crawl number 5.

Step 3: Transmit the query packets generated by each se-
lected servent, based on the proposed framework in
Sect. 3.1.

Note that, for each value of probability p, statistics
can be collected NumPlace × NumQuery times through
the above simulation. In this paper, we collected the fol-
lowing statistics concerning both success rate of retrieval
and overhead of query algorithm (cf. Fig. 3), where i =
1, . . . ,NumPlace × NumQuery.

sp(i): A value describing whether or not target files will be
found before the search terminates (i.e., the value is
1 when the target files are found at least once and 0
otherwise).

gp(i): Number of (all) generated query packets that each
node in the network must process before the search ter-
minates (i.e., the average number of (all) existing query
packets in the network before the search terminates).

vp(i): Number of visited nodes before the search terminates.

dp(i): Number of duplicated query packets that each node
in the network must process before the search termi-
nates, where the number of duplicated query packets is
defined as gp(i) − vp(i).

Using these statistics, we can define the following cri-
teria, where |C| is the number of elements included in the
set C. We evaluated the simulation results for probability p
using these criteria.

S p: Probability of finding the target object before the
search terminates.

S p =

∑NumPlace∗NumQuery
i=1 sp(i)

NumPlace ∗ NumQuery

Gp: Overhead of an algorithm measured by the average
number of generated query packets that each node in
the network must process.

Fig. 3 Example of evaluation. (flooding-based query-algorithm)

†The original network data had been available in [4]. Though
the data had been deleted from the site already (see [5]), we can
get the same data in [3]. Collection method of the data is given in
[6].

4520
IEICE TRANS. COMMUN., VOL.E88–B, NO.12 DECEMBER 2005

Fig. 4 Success rate of retrieval (S p) versus the average number of generated query packets (Gp) for
N1(n, h), N2(n, h), and N3(n, h). The horizontal axis is a log scale. (Left: p = 0.01, Right: p = 0.05)

Fig. 5 Success rate of retrieval (S p) versus the average number of duplicated query packets (Dp) for
N1(n, h), N2(n, h), and N3(n, h). The horizontal axis is a log scale. (Left: p = 0.01, Right: p = 0.05)

Gp =
1
|C|
∑NumPlace∗NumQuery

i=1 gp(i)

NumPlace ∗ NumQuery

Dp: Overhead of an algorithm measured by the average
number of duplicated query packets that each node in
the network must process.

Dp =
1
|C|
∑NumPlace∗NumQuery

i=1 dp(i)

NumPlace ∗ NumQuery

4.2 Results and Discussion

The simulation results are shown in Figs. 4 and 5, where the
parameter values used for these simulations are listed in Ta-
ble 1. Here, these parameter values are valid for comparing
the performance of N1(n, h), N2(n, h) and N3(n, h). This is
because we can confirm the difference between the proper-
ties of these query algorithms in Figs. 4 and 5 using these
values. A detailed discussion about the difference between
the properties is given in this section. The simulation results
are summarized in Table 2. Although these figures are for
crawl5, the results were almost the same even when other
topology data was used.

We measured the overheads of algorithms by Gp and

Table 1 Parameters values.

NumPlace 20
NumQuery 200

TTL 7
p 0.01, 0.05

d1 1, 2, 3, 4, 5, 6
d2 0
d3 0, 1, 2, 3, 4, 5, 6, 7
k 10, 20, 40, 80, 160, 320, 640

Table 2 Results of simulations.

N1 N2 N3

Gp p = 0.01 good bad good
p = 0.05 bad good good

Dp p = 0.01 good bad good
p = 0.05 bad bad good

Dp. Note that the average number of generated query pack-
ets per node (Gp) and the average number of duplicated
query packets per node (Dp) increased as the values of d1, k,
and d3 rose. The detailed relationship between the values of
parameters (d1, k, and d3) and the values of criteria (Gp, Dp,
and S p) is given in Tables 3, 4, and 5.

As we can see from Fig. 4 (right), which is for p =
0.05, N2(n, h) and N3(n, h) found target files with higher

LETTER
4521

Table 3 Relationship between d1, Gp, and Dp.

d1 1 2 3 4 5 6

G0.01 0.011 0.040 0.11 0.24 0.44 0.67
D0.01 0.00069 0.0081 0.031 0.071 0.13 0.21
S 0.01 0.17 0.38 0.57 0.76 0.89 0.95

G0.05 0.010 0.038 0.11 0.24 0.44 0.67
D0.05 0.00069 0.0075 0.029 0.069 0.13 0.20
S 0.05 0.41 0.66 0.84 0.94 0.98 0.99

Table 4 Relationship between k, Gp, and Dp.

k 10 20 40 80 160 320 640

G0.01 0.016 0.033 0.66 0.13 0.26 0.53 1.1
D0.01 0.0073 0.018 0.042 0.095 0.21 0.45 0.94
S 0.01 0.21 0.31 0.39 0.53 0.68 0.76 0.82

G0.05 0.016 0.033 0.66 0.13 0.26 0.53 0.11
D0.05 0.0073 0.018 0.043 0.095 0.21 0.45 0.94
S 0.05 0.63 0.76 0.89 0.94 0.97 0.98 0.99

Table 5 Relationship between d3, Gp, and Dp.

d3 0 1 2 3 4 5 6 7

G0.01 0.015 0.027 0.073 0.15 0.27 0.43 0.58 0.66
D0.01 0.0015 0.0034 0.013 0.032 0.070 0.12 0.17 0.20
S 0.01 0.23 0.36 0.55 0.70 0.80 0.90 0.93 0.95

G0.05 0.16 0.26 0.72 0.15 0.27 0.42 0.59 0.66
D0.05 0.0015 0.0032 0.012 0.032 0.066 0.12 0.18 0.20
S 0.05 0.68 0.77 0.88 0.94 0.96 0.98 0.99 0.99

probability than N1(n, h), when N1(n, h), N2(n, h), and
N3(n, h) used the same number of generated query pack-
ets. Additionally, we can see from Fig. 4 (left), which is
for p = 0.01, that N1(n, h) and N3(n, h) found the target
files with higher probability than N2(n, h), when N1(n, h),
N2(n, h), and N3(n, h) used the same number of generated
query packets. This means that N3(n, h) found the target files
with a smaller number of generated query packets regardless
of the value of p, although N1(n, h) found target files with a
smaller number of generated query packets only when p was
low, and N2(n, h) found target files with a smaller number of
generated query packets only when p was high.

Moreover, as we can see from Fig. 5 (right), which is
for p = 0.05, N3(n, h) found target files with higher prob-
ability than N1(n, h) and N2(n, h), when N1(n, h), N2(n, h),
and N3(n, h) used the same number of duplicated query
packets. Additionally, as we can see from Fig. 5 (left),
which is for p = 0.01, N1(n, h) and N3(n, h) found the target
files with higher probability than N2(n, h), when N1(n, h),
N2(n, h), and N3(n, h) used the same number of duplicated
query packets. This means that N3(n, h) found target files
with a smaller number of duplicated query packets regard-
less of the value of p, although N1(n, h) found the target files
with a smaller number of generated query packets only when
p was low, and N2(n, h) found target files with a larger num-
ber of duplicated query packets regardless of the value of p.
This is because if the query algorithm based on N2(n, h) is
used, the requesting servent’s neighbours must transmit nu-
merous redundant query packets when k is high. We there-

fore conclude that N3(n, h) can find target files with fewer
query packets without duplication, regardless of the value
of p, although N1(n, h) can find target files with fewer query
packets without duplication only when p is low, and N2(n, h)
can find target files with fewer query packets by duplication
only when p is high.

Finally, a closer look at the qualitative difference be-
tween N2(n, h) and N3(n, h) in Figs. 4 and 5 for p = 0.05
is worthwhile. That is, both N2(n, h) and N3(n, h) find tar-
get files with almost the same probability when they used
the same number of generated query packets (see Fig. 4
(right)), while the number of duplicated query packets used
in N3(n, h) is smaller than that in N2(n, h). This means that
these two query algorithms find target files with almost the
same probability, though the number of visited nodes in
N3(n, h) is larger than that in N2(n, h). This point seems to
be paradoxical, because it is natural to say that the probabil-
ity of finding a target file increases as the number of visited
nodes increases. We discuss the seeming paradox in the Ap-
pendix. Note that the seeming paradox does not influence
the result of this paper summarised in Table 2 if we can re-
solve the paradox, because the result is valid whether or not
we notice the paradox.

5. Conclusion and Further Study

This paper provided a unified framework for query algo-
rithms. This framework decides the number of destinations
of query packets based on the hop value, and it can describe

4522
IEICE TRANS. COMMUN., VOL.E88–B, NO.12 DECEMBER 2005

the flooding-based query algorithm and k-random walks.
We simulated various query algorithms within the frame-
work using actual topology data. As a result, we found a
better query algorithm than the flooding-based query algo-
rithm and k-random walks. We conclude that the number of
servents to which the query packet will be forwarded should
be small as the hop value increases like N3(n, h). This is
because, N3(n, h) can find target files with higher probabil-
ity and lower overhead regardless of the value of p, though
N1(n, h) (i.e., flooding-based query algorithm) and N2(n, h)
(i.e., k-random walks) can find target files with higher prob-
ability and lower overhead only when the value of p is low
or high, respectively.

References

[1] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replica-
tion in unstructured peer-to-peer networks,” Proc. 16th Annual ACM
International Conference on Supercomputing, pp.84–95, 2002.

[2] K. Sripanidkulchai, “The popularity of gnutella queries and its impli-
cations on scalability,” http://www-2.cs.cmu.edu/kunwadee/research/
p2p/gnutella.html

[3] Crawl number 5 network, http://cantor.ee.ucla.edu/˜boykin/data/
crawl5.log

[4] LimeWire, http://crawler.limewire.org/data.html
[5] Internet Archive, http://web.archive.org/web/*/http://crawler.

limewire.org/data.html
[6] DELIS (Dynamically Evolving Large-scale Information Systems)

Project, “Measurement methodology for wireless ad hoc multihop
networks,” http://delis.upb.de/deliverables/D2.2.1.pdf

Appendix: Detailed Relationship between N2(n, h) and
N3(n, h)

Note that the definition of N2(n, h) and N3(n, h) given in
Sect. 3 indicates that the number of destination in N2 does
not depend on the fluctuation of nodal degree while that in
N3 does. This means that the number of visited nodes in N3

fluctuates more widely than that in N2. Therefore, the vari-
ance of the number of visited nodes, vp(i) = gp(i) − dp(i), in
N3 is larger than that in N2.

On the other hand, the theoretical expression of the
probability of finding a target file, S p, is given as

S p =

∑NumPlace∗NumQuery
i=1 {1 − (1 − p)vp(i)}

NumPlace ∗ NumQuery
. (A· 1)

In the following, we abbreviate NumPlace as NP and Num-
Query as NQ. Moreover, let us define Vp as Gp − Dp. Note
that |C|×Vp is the mean value of the number of visited nodes
in C.

Executing the Taylor expansion of 1 − (1 − p)vp(i) for
vp(i) at |C| × Vp, we get

1 − (1 − p)vp(i)

= 1 −
∞∑

n=0

1
n!

(1 − p)|C |×Vp

×{ln(1 − p)}n{vp(i) − |C| × Vp}n

≈ 1 −
2∑

n=0

1
n!

(1 − p)|C |×Vp

×{ln(1 − p)}n{vp(i) − |C| × Vp}n. (A· 2)

Here, we ignore the terms containing ln(1 − p)n for n ≥ 3.
This is because if p � 1 then | ln(1 − p)| � 1. Moreover,
substituting Eq. (A· 2) into Eq. (A· 1), we get

S p ≈ 1 − (1 − p)|C|×Vp

[
1 +
{ln(1 − p)}2

2

× 1
NP × NQ

NP×NQ∑
i=1

{vp(i) − |C| × Vp}2
]
. (A· 3)

Finally, defining the mean value and variance of vp(i) by
E[vp] and V[vp], respectively, we can rewrite Eq. (A· 3) as

S p ≈ 1 − (1 − p)E[vp]
[
1 +
{ln(1 − p)}2

2
V[vp]

]
. (A· 4)

Note that E[vp] = |C| × Vp.
Equation (A· 4) indicates that the probability of finding

a target file, S p, increases as the mean value of the number
of the visited nodes, E[vp], increases or the variance of the
number of the visited nodes, V[vp], decreases. Now, we can
explain why both N2 and N3 find target files with almost the
same probability though the mean value of the number of
visited nodes in N3 is larger than that in N2. That is, we can
find that the following two properties cancel each other.

• N3 has a better property than N2 to increase the proba-
bility of finding a target file because the mean value of
the number of visited nodes in N3 is larger than that in
N2.

• N2 has a better property than N3 to increase the prob-
ability of finding a target file because the variance of
the number of visited nodes in N2 is smaller than that
in N3.

So, we can resolve the seeming paradox pointed out in the
last paragraph in Sect. 4.2.

Note that the value of {ln(1−p)}2 for p = 0.01 is smaller
than that for p = 0.05. This means that the influence of
V[vp] in Eq. (A· 4) is smaller when p = 0.01. So, we can
say that the probability of finding a target file depends only
on the mean value of the number of visited nodes when p =
0.01.

