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SUMMARY It is important to predict serious deterioration of telecom-
munication quality. This paper investigates predicting such serious events
by analyzing only a “short” period (i.e., a “small” amount) of teletraffic
data. To achieve this end, this paper presents a method for analyzing the
tail distributions of teletraffic state variables, because tail distributions are
suitable for representing serious events. This method is based on Extreme
Value Theory (EVT), which provides a firm theoretical foundation for the
analysis. To be more precise, in this paper, we use throughput data mea-
sured on an actual network during daily busy hours for 15 minutes, and use
its first 10 seconds (known data) to analyze the tail distribution. Then, we
evaluate how well the obtained tail distribution can predict the tail distribu-
tion of the remaining 890 seconds (unknown data). The results indicate that
the obtained tail distribution based on EVT by analyzing the small amount
of known data can predict the tail distribution of unknown data much better
than methods based on empirical or log-normal distributions. Furthermore,
we apply the obtained tail distribution to predict the peak throughput in
unknown data. The results of this paper enable us to predict serious deteri-
oration events with lower measurement cost.
key words: serious deterioration of the telecommunication quality, predic-
tion, tail distribution, extreme value theory

1. Introduction

The tail distributions of teletraffic state variables, such as
throughput, link-usage rate, packet loss rate, queue length,
and delay time, are useful for predicting serious deteriora-
tion of telecommunication quality. The results of the pre-
dictions are also useful because they play a vital role in de-
signing networks and controlling teletraffic effectively. For
example, it is clear that the tail behavior (e.g., maximum
(worst) value, high quantile value) of throughput and the
link-usage rate affect the design of the bandwidth, and the
tail behavior of the queue length affects the design of the
buffer size. What is more, the volume of teletraffic can be
controlled beforehand if we can predict serious deterioration
of telecommunication quality. On the other hand, with the
growth in Internet traffic and the growing variety of Inter-
net applications, it is becoming more important to predict
serious deterioration of telecommunication quality on an IP
network, because IP networks that can satisfy the demand
for guaranteed quality of service (QoS) will be increasingly
required. It follows from what has been said that it is mean-
ingful to analyze the tail distributions of teletraffic state vari-
ables. The purpose of this paper is to analyze them.

Up to now, a number of studies have investigated tele-
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traffic behavior. For example, numerous papers on aggre-
gated teletraffic have revealed that the burst for a short pe-
riod and the correlation for a long period of aggregated tele-
traffic in various networks are remarkable [1], [2]. On the
other hand, it is reported that this feature is suppressed with
a high load [3]. However, these studies do not give much im-
portance to analyzing the tail distribution of teletraffic data,
which is important for evaluating telecommunication qual-
ity.

On the other hand, a great deal of effort has been made
on tail distribution analysis. For example, in [4] and [5], it
is shown that the tail distribution of teletraffic data can be
approximated using a “mixture of normal distributions” and
using a “Pareto distribution”, respectively. What seems to
be lacking, however, is the evaluation of how well the tail
distribution obtained by analyzing known (observed, past)
teletraffic data can predict the tail distribution of unknown
(unovserved, future) teletraffic data, where both known and
unknown data are measured on the same network under sim-
ilar conditions. This insufficiency is a real and substantial
problem because if the tail distribution obtained by analyz-
ing known data cannot provide an accurate prediction (ap-
proximation) for the tail distribution of unknown data, then
the methods for designing networks and controlling teletraf-
fic using the analysis results will become unreliable.

Against this background, this paper analyzes the tail
distribution using known data, and focuses on whether the
analysis result is appropriate for unknown data. This paper
also focuses on using a “small” amount (i.e., a “short” pe-
riod) of teletraffic data as known data. In other words, the
purpose of this paper is to predict unknown serious events
that are not included in the small amount of known data. Ob-
viously, this is also meaningful from the viewpoint of mea-
surement cost. As the first step in our work, this paper uses
throughput data as an example.

To analyze the tail distribution, in this paper, we look at
Extreme Value Theory (EVT), which provides a firm theo-
retical foundation for the analysis. To show that EVT works
efficiently in the analysis, we first approximate the tail dis-
tribution of a small amount of known data based on EVT.
Although EVT was simply applied to analyze the tail distri-
bution (of known data) in [5], this paper applies EVT more
rigorously. Then, we show that the approximated tail distri-
bution of known data based on EVT can also approximate
the tail distribution of unknown data. In addition, we also
show that the approximated tail distributions of known data
based on the empirical distribution or the log-normal dis-



UCHIDA: TRAFFIC DATA ANALYSIS BASED ON EXTREME VALUE THEORY AND ITS APPLICATIONS
2655

tribution, which is used as the model of the distribution of
Web transfer throughput [6], cannot approximate the tail di-
stiribution of unknown data. Finally, we apply the analysis
result based on EVT to estimate the peak value of through-
put in unknown data.

This paper is organized as follows. In Sect. 2, we sur-
vey EVT, which is the theoretical background of this paper.
In Sect. 3, we explain the method for analyzing tail distribu-
tions. In Sect. 4, we discuss the analysis in [5] and describe
its relationship with this paper. In Sect. 5, we present the
analysis results and their efficiency. Section 6 is the conclu-
sion.

2. Extreme Value Theory

Consider a random variable X with distribution function F
that is defined by

F(x) = Pr{X ≤ x}.
In EVT [7], [8], it is shown that for a large class of under-
lying distributions F, we can find a constant value ξ and a
positive function β(u) such that

F(x) ≈ (1 − F(u))Gξ,β(u)(x − u) + F(u) (1)

for x > u when u → xF , where xF ≤ ∞ is called the right
endpoint of F and is defined by

xF = sup{x ∈ R; FX(x) < 1},
and Gξ,β(u) is called the Generalized Pareto Distribution
(GPD), which is defined by

Gξ,β(u)(y) =

{
1 − (1 + ξy/β(u))−1/ξ ξ � 0
1 − exp(−y/β(u)) ξ = 0

.

That is, for a large class of underlying distributions F, as
the threshold u is progressively raised, the tail distribution
of F converges to a GPD. In addition, this class contains
almost all of the common continuous distributions: normal,
log-normal, gamma, log-gamma, exponential, χ2, t, F, uni-
form, beta, Pareto, Cauchy, and a mixture of these. This
flexibility is useful for analyzing tail distributions, because
we can model a tail distribution using a GPD regardless of a
underlying distribution F.

3. Analysis Method

Let D = {x1, x2, . . . , xn} be originally observed data gov-
erned by a distribution function F. Then, for the data D,
let F̃D(x) be the empirical distribution function. F̃D(x) is
defined as

F̃D(x) =
1
|D|

∑
d∈D

I{d|d≤x,d∈D}(d),

where |D| is the number of elements in D, and

IA(a) =

{
1 if a ∈ A
0 if a � A

is called the indicator function for set A.
In this paper, we use F̃(u) as the estimator of F(u),

and provide the estimators of ξ and β(u) using the moment
method [9]. The moment estimators of ξ and β(u), which are
denoted by ξ̂D(u) and β̂D(u), can be derived as

ξ̂D(u) =
1
2

(
1 − êD(u)2

v̂D(u)

)
,

β̂D(u) = (1 − ξ̂D(u))êD(u),

where

êD(u) =

∑
y∈{d−u|d>u,d∈D} y
|D| − ND(u)

,

v̂D(u) =

∑
y∈{d−u|d>u,d∈D}{y − êD(u)}2

|D| − ND(u)
,

and

ND(x) =
∑
d∈D

I{d|d≤x,d∈D}(d).

Now, we can provide the estimated tail distribution
function as

F̂D(x, u)

= (1 − F̃D(u))Gξ̂D(u),β̂D(u)(x − u) + F̃D(u), (2)

for x > u.
Finally, let us denote the arrangement of D =

{x1, x2, . . . , xn} in ascending order of value by

x[1] ≤ x[2] ≤ . . . ≤ x[n].

In this paper, we abbreviate F̂D(x, x[k]) as F̂D,k(x), ξ̂D(x[k])
as ξ̂D,k, and β̂D(x[k]) as β̂D,k, when u = x[k].

4. Related Work

Regular variation theory is known as a basis of EVT. In this
theory, it is shown that

1 − F(x) = cx−α, x → ∞, (3)

for x > 1, where c is a constant value.
In [5], the data of packet interarrival and call holding

times are analyzed using the above result, and the accu-
racy of the analysis is discussed. However, as mentioned in
Sect. 1, there is no discussion of the accuracy of the approx-
imation for unknown data. In addition, Eq. (1) can include
Eq. (3) as a special case because Eq. (3) can be derived by
substituting u = 1, β(u) = ξ, 1

ξ
= α, and F(u) = 1 − c in

Eq. (1). Therefore, it is sufficient to consider Eq. (1). Note
that this substitution assumes that the value of u is small.
However, in the following sections, it is shown that if u is
small, the analysis results are not valid.

5. Analysis of Real Traffic Data

5.1 Traffic Data

In our analysis, we used one-way traffic traces pro-
vided by the Widely Integrated Distributed Environment
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(WIDE) project – the largest Internet research community
in Japan [10]. The traces were measured on one of the in-
ternational lines for the WIDE project during daily busy
hours (14:00–14:15), and were available from the MAWI
(Measurement and Analysis on the WIDE Internet) traffic
archive [11]. The measured line was a 100-Mbps Ethernet
with an 18-Mbps CAR (Committed Access Rate). More de-
tailed information about the traces is given in [10], [11].

In this section, we use the trace measured on July 7,
2003 (200307071400.dump.gz), and analyze the through-
put data of each 10 ms calculated from the trace. We se-
lected this sampling cycle (10 ms) so that we were able to
see packet-level telecommunication quality, such as queue-
ing delay. In determining the sampling cycle, we referred to
the RED architecture [12], [13]. Further details on this point
are given in Appendix A.

Now, we define some notation for this throughput data.
First, let us denote the data as Dall = {xall

1 , x
all
2 , · · · , xall

nall},
where xall

t is the value of throughput at 10 × t ms, and
nall = 15 [min] × 60 [sec] × 1000 [msec]/10 = 90000.
Secondly, let us denote the first 1000 elements in Dall as
D = {x1, x2, · · · , xn}. That is, n = 1000 and xt = xall

t
(t = 1, · · · , n). Finally, let us denote the remaining 89000
elements in Dall as D̄ = {x̄1, x̄2, · · · , x̄n̄}. That is, n̄ = 89000
and x̄t = xall

1000+t (t = 1, · · · , n̄).
In the following sections, we first analyze D based on

EVT, and show that the analysis result (estimated tail distri-
bution of D) can approximate the tail distribution of D effi-
ciently. Then, we show that the estimated tail distribution of
D can also approximate the tail distribution of D̄ efficiently.
Here, we call D known data, and D̄ unknown data.

Some figures are listed for reference. The time series
of Dall is shown in Fig. 1. The time series of the first 1000
elements of Dall (i.e., known data D) is shown in Fig. 2. The
histograms of D and D̄ are shown in Fig. 3. The statistical
information about D and D̄ is shown in Table 1.

We can notice the following information from these fig-
ures and table. As shown in Table 1, the skewness of D and
D̄ take positive values. This indicates that the distributions
of D and D̄ are positively skewed. In addition, as shown
in Figs. 1 and 2, it is entirely fair to say that the teletraf-
fic retains its stationarity within this short time interval. In
this paper, we analyze only data with enough stationarity as
200307071400.dump.gz. The histogram of D is rougher
than that of D̄ as shown in Fig. 3. The range of known data
D is narrower than that of unknown data D̄ (compare the
values of minimum and maximum of D and D̄) as shown in
Table 1. Thus, these characteristics indicate that it may be
difficult to estimate D̄ from D in a simple manner. However,
in this paper, we show that the tail distribution of D̄ can be
approximated even when such rough data D is used for the
analysis if we use EVT.

5.2 Analysis of Known Data

In this section, we analyze the known data D and look at how
well the analysis results approximate the tail distribution of

Fig. 1 Time series of throughput.

Fig. 2 Stretched image of Fig. 1.

Fig. 3 Histograms of D and D̄ (Left: D, Right: D̄).

Table 1 Statistics of D and D̄.

num min max ave var skew
D 1000 2.69 45.52 16.94 45.80 0.67
D̄ 89000 0.66 54.66 17.26 42.58 0.57

Fig. 4 QQ-plots described by Eq. (4) for k = 300, 600, 700, 800, 900,
and 980.

D. To start, we look at the analysis result using EVT. The
sequence of QQ-plots (see Appendix B) is shown in Fig. 4,(

d, F̂−1
D,k

(
1

|D| + 1
ND(d)

))
,

for d ∈ {d|d > x[k], d ∈ D}, (4)
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where k = 300, 600, 700, 800, 900, and 980. As shown in the
sequence of figures, (i) when k = 300 the plot clearly devi-
ates from a straight line with gradient of 1 and y-intercept
of 0, and (ii) when k = 600, 700,800,900, and 980, each
plot approaches a straight line with gradient of 1 and y-
intercept of 0. Although the plot for k = 980 seems to follow
this line less closely than the plots for k = 600, 700, 800,
and 900, the point to observe here is that all plots for
k = 600, 700, 800, 900, and 980 are much closer to a straight
line with gradient of 1 and y-intercept of 0 than the plot for
k = 300. This indicates that the tail distribution of known
data D can be approximated by

F̂D,k(x)

= (1 − F̃D(x[k]))Gξ̂D,k ,β̂D,k
(x − x[k]) + F̃D(x[k]),

for x > x[k], where k = 600, 700, 800,900, and 980.
Considering that the log-normal distribution is used

as the model of the distribution of Web transfer through-
puts [6], we then look at the QQ-plot using the log-normal
distribution. The QQ-plot(

d, L−1
µ̂D,σ̂

2
D

(
1

|D| + 1
ND(d)

))
,

for d ∈ {d|d > x[k], d ∈ D}, (5)

is shown in Fig. 5, where Lµ,σ2 is the log-normal distribution
function with mean µ and variance σ2, and µ̂D and σ̂2

D are
the maximum likelihood estimators of µ and σ2 for known
data D. The tail part of the plot in Fig. 5 clearly diviates
from a straight line with gradient of 1 and y-intercept of 0,
compared with Fig. 4 when k ≥ 600.

As a result, we can conclude that the tail distribution of
known data D can be approximated by the GPD better than
the log-normal distribution.

5.3 Analysis of Unknown Data

We are now in a position to say that F̂D,k can approximate
the tail distribution of known data D. However, this does
not necessarily mean that F̂D,k can also approximate the tail
distribution of F because the known data D is only a small
sample of underlying distribution F. This leads us to the
question of whether F̂D,k can approximate the tail distribu-
tion of unknown data D̄. This is a real and substantial prob-
lem, as mentioned in Sect. 1. Therefore, in this section, we
show that F̂D,k can also approximate the tail distribution of

Fig. 5 QQ-plots described by Eq. (5).

unknown data D̄ much better than both F̃D and Lµ̂D,σ̂
2
D
. Note

that, D̄ has a large number of elements, so it is close to the
underlying distribution F.

To start, we look at how well F̂D,k approximates the tail
distribution of unknown data D̄. QQ-plots(

d̄, F̂−1
D,k

(
1

|D̄| + 1
ND̄(d̄)

))
,

for d̄ ∈ {d̄|d̄ > x[k], d̄ ∈ D̄}, (6)

are shown in Fig. 6, where k = 300,600, 700, 800, 900, and
980. As shown in the sequence of figures, each QQ-plot for
k = 300, 980 deviates from a straight line with gradient of 1
and y-intercept of 0. Compared with these, each QQ-plot for
k = 600, 700, 800, and 900 is closer to a straight line with
gradient of 1 and y-intercept of 0. This means that F̂D,k can
approximate the tail distribution of unknown data D̄ when
k = 600, 700, 800, and 900. These characteristics arise from
the following two conflicting findings.

• When the value of x[k] (i.e., the value of k) is small
(k = 300 in this case), F̂D,k cannot approximate the tail
distribution of both known data D and unknown data D̄
because the condition u→ xF in Eq. (1) is not satisfied.
• When the value of x[k] (i.e., the value of k) is large

(k = 980 in this case), F̂D,k cannot approximate the tail
distribution of unknown data D̄, because |D| −ND(x[k]),
which is the number of data used for the analysis, is
small so F̂D,k becomes an excessively biased approxi-
mation of the tail distribution of D and thus does not
have enough flexibility, though the condition u → xF

in Eq. (1) is satisfied. In other words, the generality
(flexibility) of the F̂D,k to approximate unknown data
is lost by “overfitting” the small number of analyzing
data when k takes a large value, though it is easy to fit
the data because the amount of data is small.

These two points of view mean that the values of both x[k]

and |D|−ND(x[k]) have to be made large to approximate well
the tail distributions of known data D and unknown data D̄.
As a result, we can use

Fig. 6 QQ-plots described by Eq. (6) for k = 300, 600, 700, 800, 900,
and 980.
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F̂D,k(x)

= (1 − F̃D(x[k]))Gξ̂D,k ,β̂D,k
(x − x[k]) + F̃D(x[k])

as the estimated tail distribution of known data D and un-
known data D̄ for x > x[k], where k = 600, 700, 800, and
900.

So far, we have seen that the tail distribution can be ap-
proximated by F̂D,k if k is appropriately selected. Now, we
look at how well F̃D and Lµ̂D ,σ̂

2
D

approximate the tail distri-
bution of unknown data D̄.

The QQ-plot(
d̄, F̃−1

D

(
1

|D̄| + 1
ND̄(d̄)

))
,

for d̄ ∈ {d̄|d̄ > x[k], d̄ ∈ D̄}, (7)

is shown in Fig. 7 (a) and the QQ-plot(
d̄, L−1

µ̂D,σ̂
2
D

(
1

|D̄| + 1
ND̄(d̄)

))
,

for d̄ ∈ {d̄|d̄ > x[k], d̄ ∈ D̄} (8)

is shown in Fig. 7 (b). As shown in these figures, both QQ-
plots clearly deviate from straight lines with gradient of 1
and y-intercept of 0 when the value of d̄ is large, as com-
pared with the QQ-plots in Fig. 6 when k = 600, 700, 800,
and 900. This means that F̃D and Lµ̂D,σ̂

2
D

cannot approximate
the tail distribution of D̄. More specifically, for Fig. 7 (a),
this arises from the known data D hardly including outlier
elements because the number of elements in D is small. Ac-
tually, as shown in Table 1, the maximum value and average
value of known data D are smaller than those of unknown
data D̄. The important point to note is that F̂D,k can approx-
imate the tail distribution of D̄ even though D hardly in-
cludes outlier elements. In addition, as shown in Fig. 7 (b),
L−1
µ̂D ,σ̂

2
D
(ND̄(d̄)/(|D̄| + 1)) becomes much larger than d̄ when

d̄ becomes large. This indicates that the characteristics of
the tail part of the log-normal distribution cause an underes-
timation of the approximation of the tail distribution of D̄.

In the next section, we look at the effectiveness of F̂D,k

by estimating the peak throughput applying the analysis re-
sults.

5.4 Estimation of Peak Throughput

In this section, we estimate the known peak throughput (i.e.,

(a) (b)

Fig. 7 QQ-plots described by Eq. (7) and Eq. (8) ((a): Eq. (7), (b):
Eq. (8)).

the maximum value of elements in D) and the unknown peak
throughput (i.e., the maximum value of elements in D̄) using
F̂D,k, and discuss the accuracy of the estimation. The defi-
nitions of the known peak throughput xmax and the unknown
peak throughput x̄max are presented below.

xmax = max
x∈D

x

x̄max = max
x̄∈D̄

x̄

To estimate known and unknown peak throughputs, we
use the quantile function. That is, for a certain distribution
H, we use the |D|

|D|+1 -th quantile of H,

H−1

( |D|
|D| + 1

)
,

as the estimated known peak throughput of H, and we use
the |D̄|

|D̄|+1 -th quantile of H,

H−1

( |D̄|
|D̄| + 1

)
,

as the estimated unknown peak throughput of H. Note the
following relationships:

xmax = F̃−1
D

( |D|
|D| + 1

)
= F̃−1

D

( |D̄|
|D̄| + 1

)
,

x̄max = F̃−1
D̄

( |D̄|
|D̄| + 1

)
.

In addition, we denote the estimated known peak throughput
of Lµ̂D,σ̂

2
D

as lmax and the estimated unknown peak throughput

of Lµ̂D ,σ̂
2
D

as l̄max, which are defined by

lmax = L−1
µ̂D,σ̂

2
D

( |D|
|D| + 1

)

and

l̄max = L−1
µ̂D,σ̂

2
D

( |D̄|
|D̄| + 1

)
.

The relationship between k and F̂−1
D,k

( |D|
|D|+1

)
is shown in

Fig. 8, where xmax = 45.52 (Mbps) and lmax = 54.98 (Mbps).
F̂−1

D,k

( |D|
|D|+1

)
approximates the known peak throughput xmax

better than lmax when k is large (around k ≥ 600).
The relationship between k and F̂−1

D,k

( |D̄|
|D̄|+1

)
is shown in

Fig. 9, where xmax = 45.52 (Mbps), x̄max = 54.66 (Mbps),

Fig. 8 Estimated known peak throughput (relationship between k and

F̂−1
D,k

( |D|
|D|+1

)
), where xmax = 45.52 and lmax = 54.98).
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Fig. 9 Estimated unknown peak throughput (relationship between k and

F̂−1
D,k

( |D̄|
|D̄|+1

)
, where xmax = 45.52, x̄max = 54.66, and l̄max = 85.12).

and l̄max = 85.12 (Mbps). F̂−1
D,k

( |D|
|D|+1

)
approximates the un-

known peak throughput x̄max better than lmax and xmax when
k is a medium value (around 600 ≤ k ≤ 900).

It should be concluded from what was said above that
the estimated known and unknown peak throughputs based
on F̂D,k work more efficiently than F̃D and Lµ̂D,σ̂

2
D

when k is
a medium value. These results agree with the discussion in
Sects. 5.2 and 5.3.

5.5 Discussion

5.5.1 Discussion of the Value of k

We decided the appropriate range of k (around 600 ≤ k ≤
900) in the previous sections, but there is room for further in-
vestigation because the range was decided using both known
and unknown data. Note that unknown data cannot be used
for the analysis in practical situations, so we must decide the
value of k using only known data. To do this, we first recall
the results in previous sections.

• The tail distribution of known data can be approxi-
mated when k is a large value (around k ≥ 600).
• The tail distribution of unknown data can be approx-

imated when k is a large value, except when it is too
large (around 600 ≤ k ≤ 900).

The above indicates that it is necessary to increase the value
of k (i.e., ND(x[k])) so that the value of |D| − ND(x[k]) should
not become small too much. Therefore, it seems reasonable
to use the smallest value of k that is appropriate for approx-
imating the tail distribution of known data (about k = 600 in
this case). Note that, as shown above, this value of k is also
appropriate for the tail distribution of unknown data. In this
case, x[600] is 18.16 (Mbps), which is almost the same as the
average value of D and D̄.

5.5.2 Discussion of the Value of n

In the previous sections, we have seen that the tail distri-
bution of unknown data can be well estimated from a small
amount of known data by using the proposed method. This
means that the measurement of teletraffic over a short pe-
riod (e.g., the first 10 seconds) provides enough data for es-
timation of the near-future teletraffic (e.g., the following 890
seconds). However, the 10 seconds of teletraffic data might
be excessive for estimation of the teletraffic data over the

following 890 seconds. So, in this section, we use various
values smaller than 1000 (equivalent to 10 seconds) for the
number of known data n, and observe how well the tail dis-
tribution of the following 89000 unknown data (equivalent
to 890 seconds) is estimated from the smaller amounts of
known data. The efficiency of the analysis results is quan-
titatively evaluated through the estimation of peak through-
put. If we can reduce the value of n without decreasing the
efficiency of the analyzed result, it is cleary meaningful from
the practical point of view, because it means that we can re-
duce the cost of measuring the data for estimation.

Considering that the estimated unknown peak through-
put using the proposed method fluctuates with the value of
k (as seen in Fig. 9), we use the representative value defined
by

rmax,n =

�0.7n�∑
k=�0.6n�

F̂−1
Dn,k

( |D̄n|
|D̄n| + 1

)

�0.7n� − �0.6n� + 1
, (9)

where Dn is the set of the first n elements of Dall, D̄n is
the set of the following 89000 elements of Dall, and �α� is
the closest integer that is equal to or smaller than α. Note
that we decided the range of k for the summation in Eq. (9)
based on the discussion in the previous sections. That is,
as shown in the previous sections, F̂−1

Dn,k

( |D̄n |
|D̄n |+1

)
provides a

good approximation of the unknown peak throughput when
600 ≤ k ≤ 900 (see Sect. 5.4), and the value of k should be
about 600 (see Sect. 5.5.1) when n = 1000. This indicates
that the value of k should be equal to or slightly larger than
600. So, in this section, we set �0.6n� ≤ k ≤ �0.7n� (i.e.,
600 ≤ k ≤ 700 if n = 1000). Although this range might be
irrelevant for values of n other than 1000, we can obtain a
rough representative value by using this range.

Furthermore, let us define the estimated unknown peak
throughputs using an empirical distribution (xmax,n) and log-
normal distribution (l̄max,n) as

xmax,n = F̃−1
Dn

( |D̄n|
|D̄n| + 1

)
,

l̄max,n = L−1
µ̂Dn ,σ̂

2
Dn

( |D̄n|
|D̄n| + 1

)
.

Figure 10 shows the error in estimation for each
method. The estimation errors of the proposed method
(GPD), empirical distribution, and log-normal distribution
are defined as |rmax,n − x̄max,n|, |xmax,n − x̄max,n|, and |l̄max,n −
x̄max,n|, respectively, where 10 ≤ n ≤ 1000, |α| is the abso-
lute value of α, and x̄max,n is defined by

x̄max,n = F̃−1
D̄n

( |D̄n|
|D̄n| + 1

)
.

This figure shows that the proposed method provides a
much better approximation of the unknown peak throughput
than methods using the empirical or log-normal distribution,
even when 500 ≤ n ≤ 1000. However, we can also see that
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Fig. 10 Relationship between the estimation error and the number of
data used in the analysis.

|rmax,n− x̄max,n| fluctuates strongly when 10 ≤ n < 500 (espe-
cially when 10 ≤ n < 200). This is because the estimation
result is strongly affected by the fluctuation of data when the
number of data is small, so that the estimation result is un-
stable and unreliable. The above discussion means that we
can safely reduce the number of data used in estimating the
unknown peak throughput (i.e., the value of n) to at least 500
in this example.

6. Conclusion

In this paper, we analyzed the tail distribution of throughput
based on EVT (GPD) using a “small” amount of known data,
and showed that the obtained tail distribution approximates
the tail distribution of unknown data better than that based
on the empirical and log-normal distributions. In addition,
we presented an application of the obtained tail distribution
to estimate the peak throughput. The results of this paper
enable us to

• predict how the telecommunication quality will be
worsened on the network (e.g., the deterioration fre-
quency (e.g., high quantile value) and the deterioration
degree (e.g., maximum (worst) value) of the telecom-
munication quality), which can be useful information
for operating the network, by analyzing only a small
amount of teletraffic data.
• reduce the cost of measurements and the amount of

storage space for the teletraffic data to predict serious
deterioration of telecommunication quality.

Although the analysis presented in this paper was lim-
ited to an example of actual teletraffic data in [11], the re-
sults were almost the same even when other data were used.
Another example of the analysis using data in [11] is pre-
sented in the Appendix C. Furthermore, the analysis result
using data which is measured under other network condi-
tions [14] is presented in the Appendix D.

It is important to note that the scope of the EVT-based
teletraffic analysis method is not limited to throughput data.
This is because the tail distributions of teletraffic state vari-
ables, which express rare but important and serious events,
are useful in various situations for teletraffic engineering.
Therefore, the EVT-based analysis method should be a pow-
erful tool for analyzing various teletraffic data.

Some open problems remain:

• simple methods of deciding the appropriate k.

• simple methods of deciding the the minimum value of
n that is sufficient to estimate the tail distribution of
unknown data efficiently.
• the analysis of teletraffic data concerning teletraffic

states other than throughput.
• the analysis of nonstational teletraffic data.

As a final point, a closer look at the fourth item above is
worthwhile. In this paper, we have limited the discussion to
the analysis of stationary data, and shown that the proposed
method works efficiently with such data. However, the pro-
posed method is not directly applicable to the the analysis
of nonstationary data, because if the data is nonstationary,
known and unknown data would have different statistical
properties, and therefore the estimation results from known
data would become unreliable for unknown data. To over-
come this problem, we have to find a way of dealing with
stationary period only. In [15], a method for the segmen-
tation of nonstationary data into multiple sets of stationary
data has been described. Such an approach will allow us to
apply the proposed method to the individual segment of sta-
tionary data. That is, such techniques in combination with
the proposed method will give us the ability to analyze non-
stationary data.
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[8] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modeling Extremal
Events for Insurance and Finance, Springer, 1997.

[9] J.R.M. Hosking and J.R. Wallis, “Parameter and quantile estima-
tion for the generalized Pareto distribution,” Technometrics, vol.29,
pp.339–349, 1987.

[10] Widely Integrated Distributed Environment Project,
http://www.wide.ad.jp

[11] Measurement and Analysis on the WIDE Internet,
http://www.wide.ad.jp/wg/mawi

[12] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” IEEE/ACM Trans. Netw., vol.1, no.4,
pp.397–413, Aug. 1993.

[13] Cisco Systems, “Weighted random early detection on the Cisco
12000 series router,” http://cco.cisco.com

[14] R. Kawahara, K. Ishibashi, T. Hirano, H. Saito, H. Ohara, D. Satoh,



UCHIDA: TRAFFIC DATA ANALYSIS BASED ON EXTREME VALUE THEORY AND ITS APPLICATIONS
2661

S. Asano, and J. Matsukata, “Traffic measurement and analysis in an
ATM-based Internet backbone,” Comput. Commun., vol.24, no.15-
16, pp.1508–1524, Oct. 2001.

[15] K. Fukuda, H.E. Stanley, and L.A.N. Amaral, “Heuristic segmen-
tation of a nonstationary time series,” Phys. Rev. E, vol.69, no.2,
pp.021108, 2004.

Appendix A: Sampling Cycle

In this paper, we referred to RED (Random Early Detec-
tion) [12] in determining the sampling cycle. RED is com-
monly implemented in routers as a tool for packet-level con-
gestion control, and therefore it is valid to refer to the RED
architecture in determining a sampling cycle that will reveal
packet-level aspects of telecommunication quality such as
queueing delay.

In RED, a small proportion of packets are discarded
once the queue in the router has started to fill. More pre-
cisely, when a packet arrives, the following events occur.

• The average queue size is calculated.
• If the average queue size is less than the minimum

threshold, the arriving packet is queued.
• If the average queue size is between the minimum

threshold and the maximum threshold, packets are
dropped according to the packet-drop probability.
• If the average queue size is greater than the maximum

threshold, the packet is dropped.

The point is that RED discards arriving packets with
a certain probability when the average queue size exceeds
the minimum threshold. In [13], it is recommended that the
minimum threshold should be 0.03B, where B is the link
bandwidth expressed as the amount of data per second. This
means that 0.03B is equivalent to the traffic volume which
can be offered to the link over 30 ms (0.03 seconds). There-
fore, observing the teletraffic behavior with the sampling cy-
cle of 10 ms (same order as 30 ms) is meaningful from the
viewpoint of packet-level telecommunication quality. Here,
it is also important that we consider the volume of offered
load in determining the sampling cycle. For example, when
the offered load is very high (close to the link bandwidth)
or very low (close to 0 Mbps), the sampling cycle has to be
made narrower or wider, respectively. However, Tables 1,
A· 1 and A· 2 show that the volume of offered load of the
teletraffic data analyzed in this paper is neither particularly
high nor low. Therefore, we consider that the 10 ms sam-
pling cycle is valid as long as the offered load is not at either
extreme.

Appendix B: QQ-Plot

Let X be a random variable with distiribution function H.
Then, let us define its quantile function H−1 as

H−1(p) = inf{x : H(x) ≥ p}, 0 < p < 1,

where H−1(p) is called the p-th quantile. The definition
of H−1(p) means that the value of the variable X becomes

larger than H−1(p) with probability 1− p. When p is a large
value, H−1(p) is called a high quantile value.

Using sample data D′ = {x′1, x′2, · · · , x′n′ } which are
governed by a certain distribution, the QQ-plot (quantile-
quantile plot) [7] is defined by(

d′,H−1

(
1

|D′| + 1
ND′ (d

′)
))
, for d′ ∈ D′.

If the sample data D′ come from the distribution H, the
plot will be close to a straight line with gradient of 1 and
y-intercept of 0. If the deviation from the line is too strong
we can conclude that the sample comes from a different dis-
tribution. Therefore, we can visually discriminate different
distribution functions using a QQ-plot. It is known that QQ-
plots enable a strong discrimination ability, especially in the
range of the tail part of the distribution.

Appendix C: Traffic Data on a Different Day

In this section, we use the trace measured on July 9,
2003 (200307091400.dump.gz), and analyze the through-
put data of each 10 ms calculated from the trace. The anal-
ysis result of this data is shown in some figures and a table.
Table A· 1 corresponds to Table 1, and Figs. A· 1, A· 2, . . .,
A· 10 correspond to Figs. 1, 2, . . ., 10, respectively.

As shown in these figures and table, the analysis re-
sult of 200307091400.dump.gz is almost the same as that
of 200307071400.dump.gz, so the argument given in the
previous sections is mostly valid here, too. However, there
are some points to note.

The fluctuation in 200307091400.dump.gz is weaker
than that in 200307071400.dump.gz as shown in Ta-
bles 1 and A· 1. This is because the throughput range

Table A· 1 Statistics of D and D̄.

num min max ave var skew
D 1000 3.16 38.98 17.92 26.62 0.47
D̄ 89000 1.05 49.68 17.90 30.51 0.46

Fig. A· 1 Time series of throughput.

Fig. A· 2 Stretched image of Fig. A· 1.
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Fig. A· 3 Histograms of D and D̄ (Left: D, Right: D̄).

Fig. A· 4 QQ-plots described by Eq. (4) for k = 300, 600, 700, 800, 900,
and 980.

Fig. A· 5 QQ-plots described by Eq. (5).

in 200307091400.dump.gz is narrower than that
in 200307071400.dump.gz (see maximum and min-
imum values), and the variance of the throughput
in 200307091400.dump.gz is smaller than that in
200307071400.dump.gz. This means that we analyzed
two statistically different sets of throughput data.

For k = 600, 700, 800, 900, and 980, all these QQ-plots
are close to a straight line with gradient of 1 and y-intercept
of 0 as shown in Figs. A· 4 and A· 5. This indicates that both
F̂D,k and Lµ̂D ,σ̂

2
D

can well approximate the tail distribution of
known data in 200307091400.dump.gz. This is the most
significant different point between the analysis results of
200307071400.dump.gz and 200307091400.dump.gz.
However, this difference is not of major importance to our
discussion in this paper because, as shown in Figs. A· 6
and A· 7 (b), F̂D,k approximates the tail distribution of
unknown data in 200307091400.dump.gz much better
than Lµ̂D ,σ̂

2
D

when k = 600, 700, 800, and 900. This
means that Lµ̂D,σ̂

2
D

works well only for known data in

Fig. A· 6 QQ-plots described by Eq. (6) for k = 300, 600, 700, 800, 900,
and 980.

(a) (b)

Fig. A· 7 QQ-plots described by Eq. (7) and Eq. (8) ((a): Eq. (7), (b):
Eq. (8)).

Fig. A· 8 Estimated known peak throughput (relationship between k and

F̂−1
D,k

( |D|
|D|+1

)
), where xmax = 38.98 and lmax = 42.53).

Fig. A· 9 Estimated unknown peak throughput (relationship between k

and F̂−1
D,k

( |D̄|
|D̄|+1

)
, where xmax = 38.98, x̄max = 49.68, and l̄max = 58.25).

200307091400.dump.gz.
As for peak throughput estimation, F̂D,k can approxi-

mate known and unknown peak throughputs better than F̃D

and Lµ̂D ,σ̂
2
D

(see Figs. A· 8 and A· 9) when 600 ≤ k ≤ 900.
Furthermore, the error in estimation of peak througput is
sufficiently small even when 500 ≤ n ≤ 1000.



UCHIDA: TRAFFIC DATA ANALYSIS BASED ON EXTREME VALUE THEORY AND ITS APPLICATIONS
2663

Fig. A· 10 Relationship between the estimation error and the number of
data used in the analysis.

Appendix D: Traffic Data Measured under Other Net-
work Conditions

In this section, we use a trace measured under other net-
work conditions [14], and analyze the throughput data of
each 10 ms as calculated from the trace. We refer to this
throughput data as “ocn-sinet” in this paper. The mea-
surements were made on a link connecting NTT’s Open
Computer Network (OCN) and the Science Information
Network (SINET). OCN is the commercial Internet back-
bone network operated by NTT, and SINET is the largest In-
ternet backbone network for scientific research institutes in
Japan. The link is a 135-Mbps ATM circuit. The measure-
ments were made during daily busy hours over 5 minutes on
several weekdays in January 2000. For information on this
data, see [14]. Note that this link provides a physically dif-
ferent and spatially separate condition from the WIDE net-
work discussed in the body of this paper.

The analysis results for ocn-sinet are shown in sev-
eral figures and a table, where nall = 5 [min] × 60 [sec] ×
1000 [msec]/10 = 30000. Table A· 2 corresponds to Ta-
ble 1, and Figs. A· 11, A· 12, . . ., A· 20 correspond to Figs. 1,
2, . . ., 10, respectively.

As these figures and the table show, the analysis result
for this data are almost the same as those for the WIDE data
(200307071400.dump.gz and 200307091400.dump.gz),
so the arguments given in the previous sections are mostly
valid here, too. For example, as shown in Figs. A· 14 and
A· 18, F̂D,k provides a good approximation of the tail dis-
tribution and peak throughput of known data when k =
600,700, 800, 900, and 980. Furthermore, as shown in
Figs. A· 16 and A· 19, F̂D,k provides a good approximation
of the tail distribution and peak throughput of unknown data
when k = 600, 700, 800, and 900. These characteristics are
the same as the analysis results for the WIDE data. How-
ever, there are some noteworthy differences.

The fluctuation in ocn-sinet is weaker than that in the
WIDE data (see Tables 1, A· 1 and A· 2). This is because the
throughput range is narrower in the ocn-sinet data than in
the WIDE data (see maximum and minimum values), and
the variance of the throughput is smaller in the ocn-sinet
data than in the WIDE data. This means that the ocn-sinet
data was measured under different network conditions from
the WIDE data.

The most significant difference between the ocn-sinet
and WIDE data is found in Figs. 10, A· 10, and A· 20. That

Table A· 2 Statistics of D and D̄.

num min max ave var skew
D 1000 3.72 28.72 13.24 17.97 0.48
D̄ 29000 1.40 32.80 12.73 17.63 0.46

Fig. A· 11 Time series of throughput.

Fig. A· 12 Stretched image of Fig. A· 11.

Fig. A· 13 Histograms of D and D̄ (Left: D, Right: D̄).

Fig. A· 14 QQ-plots described by Eq. (4) for k = 300, 600, 700, 800,
900, and 980.

is, |rmax,n − x̄max,n| becomes sufficiently small when 300 ≤
n ≤ 1000 in Fig. A· 20, while |rmax,n − x̄max,n| becomes suf-
ficiently small when 500 ≤ n ≤ 1000 in Figs. 10 and A· 10.
This means that we can estimate the unknown peak through-
put of the ocn-sinet data from a smaller number of known
data than the case for the WIDE data. This reflects the fact
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Fig. A· 15 QQ-plots described by Eq. (5).

Fig. A· 16 QQ-plots described by Eq. (6) for k = 300, 600, 700, 800,
900, and 980.

(a) (b)

Fig. A· 17 QQ-plots described by Eq. (7) and Eq. (8) ((a): Eq. (7), (b):
Eq. (8)).

Fig. A· 18 Estimated known peak throughput (relationship between k

and F̂−1
D,k

( |D|
|D|+1

)
), where xmax = 28.71 and lmax = 33.88).

that the length of unknown data in the ocn-sinet data (290
(= 300−10) seconds) is shorter than in the WIDE data (890
(= 900−10) seconds). That is, the smaller the unknown data
is, the more we can reduce the number of data for estimating
the unknown peak throughput.

Finally, let us consider the degrees of multiplexing for

Fig. A· 19 Estimated unknown peak throughput (relationship between k

and F̂−1
D,k

( |D̄|
|D̄|+1

)
, where xmax = 28.71, x̄max = 32.80, and l̄max = 44.24).

Fig. A· 20 Relationship between the estimation error and the number of
data used in the analysis.

Table A· 3 Multiplexing levle of Dall (0707 and 0709 correspond to
200407071400.dump.gz and 200407071400.dump.gz, respectively).

network WIDE OCN-SINET
data 0707 0709 ocn-sinet

flow size [bytes] 4725.62 4458.86 6702.26
flow duration [sec] 20.48 22.06 18.26

flow rate [bytes/sec] 110400.50 100193.06 23015. 78
connections [no./sec] 9793.52 11561.99 4786.41

the three sets of teletraffic data analyzed in this paper. Ta-
ble A· 3 gives the various items of statistical information that
are relevant to the degrees of multiplexing: average flow
size [bytes], average flow duration [sec], average flow rate
[bytes/sec], and average number of connections [no./sec],
where each flow is identified by a source IP address, desti-
nation IP address, source port number, destination port num-
ber, and IP protocol. The table clearly indicates different de-
grees of multiplexing for the WIDE and ocn-sinet data. In
view of the discussion on the analysis results of these three
sets for teletraffic data, we are able to say that the proposed
method based on EVT is applicable to teletraffic data mea-
sured under various network conditions.
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